1,100 research outputs found

    The Atomic Lighthouse Effect

    Get PDF
    We investigate the deflection of light by a cold atomic cloud when the light-matter interaction is locally tuned via the Zeeman effect using magnetic field gradients. This "lighthouse" effect is strongest in the single-scattering regime, where deviation of the incident field is largest. For optically dense samples, the deviation is reduced by collective effects, as the increase in linewidth leads to a decrease of the magnetic field efficiency

    Mirror-assisted coherent backscattering from the Mollow sidebands

    Get PDF
    In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we here show that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers

    Magnetic Field Tomography

    Full text link
    Neutral atoms may be trapped via the interaction of their magnetic dipole moment with magnetic field gradients. One of the possible schemes is the cloverleaf trap. It is often desirable to have at hand a fast and precise technique for measuring the magnetic field distribution. We introduce a novel diagnostic tool for instantaneous imaging the equipotential lines of a magnetic field within a region of space (the vacuum recipient) that is not accessible to massive probes. Our technique is based on spatially resolved observation of the fluorescence emitted by a hot beam of sodium atoms crossing a thin slice of resonant laser light within the magnetic field region to be investigated. The inhomogeneous magnetic field spatially modulates the resonance condition between the Zeeman-shifted hyperfine sublevels and the laser light and therefore the amount of scattered photons. We demonstrate this technique by mapping the field of our cloverleaf trap in three dimensions under various conditions.Comment: 8 pages, 8 figure

    Cooperative Scattering by Cold Atoms

    Full text link
    We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experiments, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.Comment: submitted for special issue of PQE 201

    Charged Particle with Magnetic Moment in the Aharonov-Bohm Potential

    Full text link
    We considered a charged quantum mechanical particle with spin 12{1\over 2} and gyromagnetic ratio g2g\ne 2 in the field af a magnetic string. Whereas the interaction of the charge with the string is the well kown Aharonov-Bohm effect and the contribution of magnetic moment associated with the spin in the case g=2g=2 is known to yield an additional scattering and zero modes (one for each flux quantum), an anomaly of the magnetic moment (i.e. g>2g>2) leads to bound states. We considered two methods for treating the case g>2g>2. \\ The first is the method of self adjoint extension of the corresponding Hamilton operator. It yields one bound state as well as additional scattering. In the second we consider three exactly solvable models for finite flux tubes and take the limit of shrinking its radius to zero. For finite radius, there are N+1N+1 bound states (NN is the number of flux quanta in the tube).\\ For R0R\to 0 the bound state energies tend to infinity so that this limit is not physical unless g2g\to 2 along with R0R\to 0. Thereby only for fluxes less than unity the results of the method of self adjoint extension are reproduced whereas for larger fluxes NN bound states exist and we conclude that this method is not applicable.\\ We discuss the physically interesting case of small but finite radius whereby the natural scale is given by the anomaly of the magnetic moment of the electron ae=(g2)/2103a_e=(g-2)/2\approx 10^{-3}.Comment: 16 pages, Latex, NTZ-93-0

    Observation of a Cooperative Radiation Force in the Presence of Disorder

    Get PDF
    Cooperative scattering of light by an extended object such as an atomic ensemble or a dielectric sphere is fundamentally different from scattering from many point-like scatterers such as single atoms. Homogeneous distributions tend to scatter cooperatively, whereas fluctuations of the density distribution increase the disorder and suppress cooperativity. In an atomic cloud, the amount of disorder can be tuned via the optical thickness, and its role can be studied via the radiation force exerted by the light on the atomic cloud. Monitoring cold 87Rb^{87}\text{Rb} atoms released from a magneto-optical trap, we present the first experimental signatures of radiation force reduction due to cooperative scattering. The results are in agreement with an analytical expression interpolating between the disorder and the cooperativity-dominated regimes

    Semiclassical Theory of Quantum Chaotic Transport: Phase-Space Splitting, Coherent Backscattering and Weak Localization

    Full text link
    We investigate transport properties of quantized chaotic systems in the short wavelength limit. We focus on non-coherent quantities such as the Drude conductance, its sample-to-sample fluctuations, shot-noise and the transmission spectrum, as well as coherent effects such as weak localization. We show how these properties are influenced by the emergence of the Ehrenfest time scale \tE. Expressed in an optimal phase-space basis, the scattering matrix acquires a block-diagonal form as \tE increases, reflecting the splitting of the system into two cavities in parallel, a classical deterministic cavity (with all transmission eigenvalues either 0 or 1) and a quantum mechanical stochastic cavity. This results in the suppression of the Fano factor for shot-noise and the deviation of sample-to-sample conductance fluctuations from their universal value. We further present a semiclassical theory for weak localization which captures non-ergodic phase-space structures and preserves the unitarity of the theory. Contrarily to our previous claim [Phys. Rev. Lett. 94, 116801 (2005)], we find that the leading off-diagonal contribution to the conductance leads to the exponential suppression of the coherent backscattering peak and of weak localization at finite \tE. This latter finding is substantiated by numerical magnetoconductance calculations.Comment: Typos in central eqns corrected (this paper supersedes cond-mat/0509186) 20page

    Resonances in Mie scattering by an inhomogeneous atomic cloud

    Get PDF
    Despite the quantum nature of the process, collective scattering by dense cold samples of two-level atoms can be interpreted classically describing the sample as a macroscopic object with a complex refractive index. We demonstrate that resonances in Mie theory can be easily observable in the cooperative scattering by tuning the frequency of the incident laser field or the atomic number. The solution of the scattering problem is obtained for spherical atomic clouds who have the parabolic density characteristic of BECs, and the cooperative radiation pressure force calculated exhibits resonances in the cloud displacement for dense clouds. At odds from uniform clouds which show a complex structure including narrow peaks, these densities show resonances, yet only under the form of quite regular and contrasted oscillations

    Modification of radiation pressure due to cooperative scattering of light

    Full text link
    Cooperative spontaneous emission of a single photon from a cloud of N atoms modifies substantially the radiation pressure exerted by a far-detuned laser beam exciting the atoms. On one hand, the force induced by photon absorption depends on the collective decay rate of the excited atomic state. On the other hand, directional spontaneous emission counteracts the recoil induced by the absorption. We derive an analytical expression for the radiation pressure in steady-state. For a smooth extended atomic distribution we show that the radiation pressure depends on the atom number via cooperative scattering and that, for certain atom numbers, it can be suppressed or enhanced.Comment: 8 pages, 2 Figure

    Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E

    Full text link
    Photoproduction of η\eta mesons from neutrons} \abstract{Results from measurements of the photoproduction of η\eta mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η3π06γ\eta\to3\pi^{0}\to6\gamma decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γnnη\gamma n\rightarrow n\eta. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P11P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable EE. Both data sets together were also used to extract the helicity dependent cross sections σ1/2\sigma_{1/2} and σ3/2\sigma_{3/2}. The narrow structure in the excitation function of γnnη\gamma n\rightarrow n\eta appears associated with the helicity-1/2 component of the reaction
    corecore