5,779 research outputs found
Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma
Using kinetic theory for homogeneous collisionless magnetized plasmas, we
present an extended review of the plasma waves and instabilities and discuss
the anisotropic response of generalized relativistic dielectric tensor and
Onsager symmetry properties for arbitrary distribution functions. In general,
we observe that for such plasmas only those electromagnetic modes whose
magnetic field perturbations are perpendicular to the ambient magneticeld,
i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique
propagation all modes do show such anisotropic effects. Considering the
non-relativistic bi-Maxwellian distribution and studying the relevant
components of the general dielectric tensor under appropriate conditions, we
derive the dispersion relations for various modes and instabilities. We show
that only the electromagnetic R- and L- waves, those derived from them and the
O-mode are affected by thermal anisotropies, since they satisfy the required
condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and
the modes derived from it (the pure transverse X-mode and Bernstein mode) show
no such effect. In general, we note that the thermal anisotropy modifies the
parallel propagating modes via the parallel acoustic effect, while it modifies
the perpendicular propagating modes via the Larmor-radius effect. In oblique
propagation for kinetic Alfven waves, the thermal anisotropy affects the
kinetic regime more than it affects the inertial regime. The generalized fast
mode exhibits two distinct acoustic effects, one in the direction parallel to
the ambient magnetic field and the other in the direction perpendicular to it.
In the fast-mode instability, the magneto-sonic wave causes suppression of the
firehose instability. We discuss all these propagation characteristics and
present graphic illustrations
The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors
New experiments that measure the low-frequency shot-noise spectrum at local
tunneling contacts on mesoscopic structures are proposed. The current
fluctuation spectrum at a single tunneling tip is determined by local partial
densities of states. The current-correlation spectrum between two tunneling
tips is sensitive to non-diagonal density of states elements which are
expressed in terms of products of scattering states of the conductor. Thus such
an experiment permits to investigate correlations of electronic wave functions.
We present specific results for a clean wire with a single barrier and for
metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure
Decoherent histories analysis of the relativistic particle
The Klein-Gordon equation is a useful test arena for quantum cosmological
models described by the Wheeler-DeWitt equation. We use the decoherent
histories approach to quantum theory to obtain the probability that a free
relativistic particle crosses a section of spacelike surface. The decoherence
functional is constructed using path integral methods with initial states
attached using the (positive definite) ``induced'' inner product between
solutions to the constraint equation. The notion of crossing a spacelike
surface requires some attention, given that the paths in the path integral may
cross such a surface many times, but we show that first and last crossings are
in essence the only useful possibilities. Different possible results for the
probabilities are obtained, depending on how the relativistic particle is
quantized (using the Klein-Gordon equation, or its square root, with the
associated Newton-Wigner states). In the Klein-Gordon quantization, the
decoherence is only approximate, due to the fact that the paths in the path
integral may go backwards and forwards in time. We compare with the results
obtained using operators which commute with the constraint (the ``evolving
constants'' method).Comment: 51 pages, plain Te
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model
In the quasi-inert Higgs doublet model, we study the LHC diphoton rate for a
standard model-like Higgs boson and the top quark forward-backward asymmetry at
Tevatron. Taking into account the constraints from the vacuum stability,
unitarity, electroweak precision tests, flavor physics and the related
experimental data of top quark, we find that compared with the standard model
prediction, the diphoton rate of Higgs boson at LHC can be enhanced due to the
light charged Higgs contributions, while the measurement of the top quark
forward-backward asymmetry at Tevatron can be explained to within due
to the non-standard model neutral Higgs bosons contributions. Finally, the
correlations between the two observables are discussed.Comment: 14 pages, 5 figues. Version to appear in JHEP, some references adde
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
Dynamical approach to spectator fragmentation in Au+Au reactions at 35 MeV/A
The characteristics of fragment emission in peripheral Au+Au
collisions 35 MeV/A are studied using the two clusterization approaches within
framework of \emph{quantum molecular dynamics} model. Our model calculations
using \emph{minimum spanning tree} (MST) algorithm and advanced clusterization
method namely \emph{simulated annealing clusterization algorithm} (SACA) showed
that fragment structure can be realized at an earlier time when spectators
contribute significantly toward the fragment production even at such a low
incident energy. Comparison of model predictions with experimental data reveals
that SACA method can nicely reproduce the fragment charge yields and mean
charge of the heaviest fragment. This reflects suitability of SACA method over
conventional clusterization techniques to investigate spectator matter
fragmentation in low energy domain.Comment: 6 pages, 5 figures, accepte
Recommended from our members
A comprehensive optimization methodology for strategic environmental sensor station locations
textAdverse weather poses a significant threat to transportation safety. Road weather information systems (RWIS) aim to mitigate the impact of adverse weather by detecting spatiotemporal variations of weather and/or road pavement conditions in real time. Due to the lack of a detailed, unified guideline and diverse weather conditions across the United States, state and city transportation agencies follow different practices for choosing locations for environmental sensor stations (ESS) (the components that collect RWIS weather data). To fill this gap, this study proposes a comprehensive cell-based methodology that is data-driven, using crash records, weather data, and road network information. The contribution of the proposed methodology is that the model optimizes overall benefits derived from RWIS based on weather-sensitive crashes. Both normal and adverse weather crash data are used to derive cell-vulnerability rates in adverse weather. First, a sequential procedure is devised to identify the required number of stations for the region. Then, optimal weather station locations are identified using a genetic algorithm. The proposed approach is especially suited for optimizing region-wide ESS locations involving complex road networks or a large number of road segments. A case study was conducted using data from the Crash Records Information System (CRIS) between 2010 and 2013 in the Austin District, an area especially vulnerable to rain. It was found in the case study that ten ESSs would be a good choice to implement in the region. Their proposed global optimal locations layout would cover 94% of total crashes occurring in the region based on 20 miles of coverage for each station. The RWIS would have spatial coverage of 48% and 92% reliability should one ESS fail.Civil, Architectural, and Environmental Engineerin
Trajectories for the Wave Function of the Universe from a Simple Detector Model
Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we
consider a simple model for quantum cosmology which includes, in the total
Hamiltonian, model detectors registering whether or not the system, at any
stage in its entire history, passes through a series of regions in
configuration space. We thus derive a variety of well-defined formulas for the
probabilities for trajectories associated with the solutions to the
Wheeler-DeWitt equation. The probability distribution is peaked about classical
trajectories in configuration space. The ``measured'' wave functions still
satisfy the Wheeler-DeWitt equation, except for small corrections due to the
disturbance of the measuring device. With modified boundary conditions, the
measurement amplitudes essentially agree with an earlier result of Hartle
derived on rather different grounds. In the special case where the system is a
collection of harmonic oscillators, the interpretation of the results is aided
by the introduction of ``timeless'' coherent states -- eigenstates of the
Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision
- …
