25 research outputs found

    Climate change impacts on human health over Europe through its effect on air quality

    Get PDF
    Abstract This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH4) abundances lead to increases in background O3 that offset the O3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NOx), elevated surface temperatures and humidities yield increases in surface O3 – termed the O3 climate penalty – especially in southern Europe. The O3 response is larger for metrics that represent the higher end of the O3 distribution, such as daily maximum O3. Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100. A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O3 have been identified. There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O3-related health burdens in polluted populated regions and greater PM2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O3-respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH4 leads to global and European excess O3-respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Intracellular Steps in the Biosynthesis of Collagen

    No full text
    corecore