17,197 research outputs found
Fractal Conical Lens Optical Tweezers
We propose a novel optical tweezers composed of an annular beam with alternate
radially and azimuthally polarized rings modulated by a fractal conical lens (FCL) and
demonstrate its optical forces on Rayleigh dielectric particles both analytically and numerically.
Owing to the optical system’s particular focusing properties, which could generate
a dark-centered or peak-centered intensity distribution in the focal region when selecting
an appropriate truncation parameter in front of the focusing lens, the proposed FCL optical
tweezers could selectively trap and manipulate dielectric mesoscopic particles with low- or
high-refractive indices by appropriately adjusting the radius of the pupil or the beam. Finally,
the stability conditions for effective trapping and manipulation Rayleigh particles are
analyzed
Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors
The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions. © 2014 Butterworth et al
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
We examine correlated electron and doubly charged ion momentum spectra from
strong field double ionization of Neon employing intense elliptically polarized
laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion
momentum distributions has been observed. Using a 3D semiclassical model, we
demonstrate that our observations reflect the sub-cycle dynamics of the
recollision process. Our work reveals a general physical picture for
recollision-impact double ionization with elliptical polarization, and
demonstrates the possibility of ultrafast control of the recollision dynamics.Comment: 6 pages, 5 figure
Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B
Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
Cosmological Evolution of Brane World Moduli
We study cosmological consequences of non-constant brane world moduli in five
dimensional brane world models with bulk scalars and two boundary branes. We
focus on the case where the brane tension is an exponential function of the
bulk scalar field, . In the limit , the model reduces to the two-brane model of Randall-Sundrum, whereas larger
values of allow for a less warped bulk geometry. Using the moduli
space approximation, we derive the four-dimensional low-energy effective action
from a supergravity-inspired five-dimensional theory. For arbitrary values of
, the resulting theory has the form of a bi-scalar-tensor theory. We
show that, in order to be consistent with local gravitational observations,
has to be small (less than ) and the separation of the branes
must be large. We study the cosmological evolution of the interbrane distance
and the bulk scalar field for different matter contents on each branes. Our
findings indicate that attractor solutions exist which drive the moduli fields
towards values consistent with observations. The efficiency of the attractor
mechanism crucially depends on the matter content on each branes. In the
five-dimensional description, the attractors correspond to the motion of the
negative tension brane towards a bulk singularity, which signals the eventual
breakdown of the four-dimensional description and the necessity of a better
understanding of the bulk singularity.Comment: 18 pages, 10 figures, typos and factor of 2 corrected, version to
appear in Physical Review
Probing the nuclear EOS with fragment production
We discuss fragmentation mechanisms and isospin transport occurring in
central collisions between neutron rich systems at Fermi energies. In
particular, isospin effects are analyzed looking at the correlations between
fragment isotopic content and kinematical properties. Simulations are based on
an approximate solution of the Boltzmann-Langevin (BL) equation. An attempt to
solve the complete BL equation, by introducing full fluctuations in phase space
is also discussed.Comment: 10 pages, 4 figures; Int.Nucl.Phys.Conf., Tokyo June 07, to appear in
Nucl.Phys.A (Elsart
Kondo tunneling through real and artificial molecules
When a cerocene molecule is chemisorbed on metallic substrate, or when an
asymmetric double dot is hybridized with itinerant electrons, its singlet
ground state crosses its lowly excited triplet state, leading to a competition
between the Zhang-Rice mechanism of singlet-triplet splitting in a confined
cluster and the Kondo effect (which accompanies the tunneling through quantum
dot under a Coulomb blockade restriction). The rich physics of an underscreened
S=1 Kondo impurity in the presence of low-lying triplet/singlet excitations is
exposed. Estimates of the magnetic susceptibility and the electric conductance
are presented.Comment: 4 two-column revtex pages including 1 eps figur
- …
