33 research outputs found

    Iterative joint frequency offset and channel estimation for OFDM systems using first and second order approximation algorithms

    Get PDF
    [[abstract]]To implement an algorithm for joint estimation of carrier frequency offset (CFO) and channel impulse response (CIR) in orthogonal frequency division multiplexing (OFDM) systems, the maximum-likelihood criterion is commonly adopted. A major difficulty arises from the highly nonlinear nature of the log-likelihood function which renders local extrema or multiple solutions for the CFO and CIR estimators. Use of an approximation method coupled with an adaptive iteration algorithm has been a popular approach to ease problem solving. The approximation used in those existing methods is usually of the first order level. Here, in addition to a new first order approximation method, we also propose a second order approximation method. Further, for the part of the adaptive iteration algorithm, we adopt a new technique which will enable performance improvement. Our first order approximation method is found to outperform the existing ones in terms of estimation accuracies, tracking range, computation complexity, and convergence speed. As expected, our second order approximation method provides an even further improvement at the expense of higher computation complication.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子版[[countrycodes]]DE

    A Joint Frequency Offset Estimation Method Based on CP and CRS

    No full text

    Pilot-Based Index Modulation

    No full text
    corecore