577 research outputs found
Unusual thermoelectric behavior of packed crystalline granular metals
Loosely packed granular materials are intensively studied nowadays.
Electrical and thermal transport properties should reflect the granular
structure as well as intrinsic properties. We have compacted crystalline
based metallic grains and studied the electrical resistivity and the
thermoelectric power as a function of temperature () from 15 to 300K. Both
properties show three regimes as a function of temperature. It should be
pointed out : (i) The electrical resistivity continuously decreases between 15
and 235 K (ii) with various dependences, e.g. at low ,
while (iii) the thermoelectric power (TEP) is positive, (iv) shows a bump near
60K, and (v) presents a rather unusual square root of temperature dependence at
low temperature. It is argued that these three regimes indicate a competition
between geometric and thermal processes, - for which a theory seems to be
missing in the case of TEP. The microchemical analysis results are also
reported indicating a complex microstructure inherent to the phase diagram
peritectic intricacies of this binary alloy.Comment: to be published in J. Appl. Phys.22 pages, 8 figure
Reentrant Phenomenon in Quantum Phase Diagram of Optical Boson Lattice
We calculate the location of the quantum phase transitions of a bose gas
trapped in an optical lattice as a function of effective scattering length
a_{\eff} and temperature . Knowledge of recent high-loop results on the
shift of the critical temperature at weak couplings is used to locate a {\em
nose} in the phase diagram above the free Bose-Einstein critical temperature
, thus predicting the existence of a reentrant transition {\em
above} , where a condensate should form when {\em increasing}
a_{\eff}. At zero temperature, the transition to the normal phase produces
the experimentally observed Mott insulator.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.htm
Spin injection and spin accumulation in all-metal mesoscopic spin valves
We study the electrical injection and detection of spin accumulation in
lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin
valve devices with transparent interfaces. Different ferromagnetic metals,
permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin
injectors and detectors. For the nonmagnetic metal both aluminium (Al) and
copper (Cu) are used. Our multi-terminal geometry allows us to experimentally
separate the spin valve effect from other magneto resistance signals such as
the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR
contribution of the ferromagnetic contacts can dominate the amplitude of the
spin valve effect, making it impossible to observe the spin valve effect in a
'conventional' measurement geometry. In a 'non local' spin valve measurement we
are able to completely isolate the spin valve signal and observe clear spin
accumulation signals at T=4.2 K as well as at room temperature (RT). For
aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm
at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350
nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory
and results obtained from giant magneto resistance (GMR), conduction electron
spin resonance (CESR), anti-weak localization and superconducting tunneling
experiments. The spin valve signals generated by the Py electrodes (alpha_F
lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes
(alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F
lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are
compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR
Trajectories for the Wave Function of the Universe from a Simple Detector Model
Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we
consider a simple model for quantum cosmology which includes, in the total
Hamiltonian, model detectors registering whether or not the system, at any
stage in its entire history, passes through a series of regions in
configuration space. We thus derive a variety of well-defined formulas for the
probabilities for trajectories associated with the solutions to the
Wheeler-DeWitt equation. The probability distribution is peaked about classical
trajectories in configuration space. The ``measured'' wave functions still
satisfy the Wheeler-DeWitt equation, except for small corrections due to the
disturbance of the measuring device. With modified boundary conditions, the
measurement amplitudes essentially agree with an earlier result of Hartle
derived on rather different grounds. In the special case where the system is a
collection of harmonic oscillators, the interpretation of the results is aided
by the introduction of ``timeless'' coherent states -- eigenstates of the
Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Decoherence, einselection, and the quantum origins of the classical
Decoherence is caused by the interaction with the environment. Environment
monitors certain observables of the system, destroying interference between the
pointer states corresponding to their eigenvalues. This leads to
environment-induced superselection or einselection, a quantum process
associated with selective loss of information. Einselected pointer states are
stable. They can retain correlations with the rest of the Universe in spite of
the environment. Einselection enforces classicality by imposing an effective
ban on the vast majority of the Hilbert space, eliminating especially the
flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase
space emerges from the quantum Hilbert space in the appropriate macroscopic
limit: Combination of einselection with dynamics leads to the idealizations of
a point and of a classical trajectory. In measurements, einselection replaces
quantum entanglement between the apparatus and the measured system with the
classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart
from the changes introduced in the editorial process the text is identical
with that in the Rev. Mod. Phys. July issue. Also available from
http://www.vjquantuminfo.or
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
- …
