16 research outputs found

    Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population

    Get PDF
    BACKGROUND: Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. OBJECTIVES: The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. METHODS: We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. RESULTS: When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p < 0.05) and found them to occur at similar frequencies, as stated by the manufacturer and in the literature. We showed that drugs displaying similar ADR profiles share targets, and we compared submitted spontaneous AE reports with our findings. For nine of the ten most prescribed antipsychotics in the patient population, larger doses were prescribed to sedated patients than non-sedated patients; five patients exhibited a significant difference (p < 0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). CONCLUSIONS: The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40264-014-0145-z) contains supplementary material, which is available to authorised users

    Fractures in Children

    No full text

    Early effects of embryonic movement: ‘a shot out of the dark’

    No full text
    It has long been appreciated that studying the embryonic chick in ovo provides a variety of advantages, including the potential to control the embryo's environment and its movement independently of maternal influences. This allowed early workers to identify movement as a pivotal factor in the development of the locomotor apparatus. With an increasing focus on the earliest detectable movements, we have exploited this system by developing novel models and schemes to examine the influence of defined periods of movement during musculoskeletal development. Utilizing drugs with known neuromuscular actions to provoke hyperactivity (4-aminopyridine, AP) and either rigid (decamethonium bromide, DMB) or flaccid (pancuronium bromide, PB) paralysis, we have examined the role of movement in joint, osteochondral and muscle development. Our initial studies focusing on the joint showed that AP-induced hyperactivity had little, if any, effect on the timing or scope of joint cavity elaboration, suggesting that endogenous activity levels provide sufficient stimulus, and additional mobilization is without effect. By contrast, imposition of either rigid or flaccid paralysis prior to cavity formation completely blocked this process and, with time, produced fusion of cartilaginous elements and formation of continuous single cartilaginous rods across locations where joints would ordinarily form. The effect of these distinct forms of paralysis differed, however, when treatment was initiated after formation of an overt cavity; rigid, but not flaccid, paralysis partly conserved precavitated joints. This observation suggests that ‘static’ loading derived from ‘spastic’ rigidity can act to preserve joint cavities. Another facet of these studies was the observation that DMB-induced rigid paralysis produces a uniform and specific pattern of limb deformity whereas PB generated a diverse range of fixed positional deformities. Both also reduced limb growth, with different developmental periods preferentially modifying specific osteochondral components. Changes in cartilage and bone growth induced by 3-day periods of flaccid immobilization, imposed at distinct developmental phases, provides support for a diminution in cartilage elaboration at an early phase and for a relatively delayed influence of movement on osteogenesis, invoking critical periods during which the developing skeleton becomes receptive to the impact of movement. Immobilization also exerts differential impact along the proximo-distal axis of the limb. Finally, our preliminary results support the possibility that embryonic hyperactivity influences the potential for postnatal muscle growth
    corecore