1,281 research outputs found
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
CITES, wild plants, and opportunities for crime
The illegal trade in endangered plants damages both the environment and local communities by threatening and destroying numerous species and important natural resources. There is very little research which systematically addresses this issue by identifying specific opportunities for crime. This article presents the results of an interdisciplinary study which brings together criminological and conservation science expertise to identify criminal opportunities in the illegal wild plant trade and suggest strategies in order to prevent and mitigate the problem. Methodologically, the study adapts a crime proofing of legislation approach to the UN Convention on the International Trade in Endangered Species of Wild Fauna and Flora and is based on documentary and interview data. Situational crime prevention is used as a framework to provide points for effective intervention
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Production Cross Section and Search for Anomalous and Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the boson
pair production cross section and most sensitive test of anomalous
and couplings in collisions at a center-of-mass energy of 1.96
TeV. The candidates are reconstructed from decays containing two charged
leptons and two neutrinos, where the charged leptons are either electrons or
muons. Using data collected by the CDF II detector from 3.6 fb of
integrated luminosity, a total of 654 candidate events are observed with an
expected background contribution of events. The measured total
cross section is pb, which is in good agreement
with the standard model prediction. The same data sample is used to place
constraints on anomalous and couplings.Comment: submitted to Phys. Rev. Let
Abstracts from the twenty-third meeting of the pancreatic society of Great Britain and Ireland at the Village Hotel, Leeds, UK
Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective.
In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed
Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees-France) : insights form model parameterization and experiments
International audienceEuropean mountains are particularly sensitive to climatic disruptions and land use changes. The latter leads to high rates of natural reforestation over the last 50 years. Faced with the challenge of predicting possible impacts on ecosystem services, LUCC models offer new opportunities for land managers to adapt or mitigate their strategies. Assessing the spatial uncertainty of future LUCC is crucial for the defintion of sustainable land use strategies. However, the sources of uncertainty may differ, including the input parameters, the model itself, and the wide range of possible futures. The aim of this paper is to propose a method to assess the probability of occurrence of future LUCC that combines the inherent uncertainty of model parameterization and the ensemble uncertainty of the future based scenarios. For this purpose, we used the Land Change Modeler tool to simulate future LUCC on a study site located in the Pyrenees Mountains (France) and 2 scenarios illustratins 2 land use strategies. The model was parameterized with the same driving factors used for its calibration. The defintion of static vs. dynamic and quantitative vs. qualitative (discretized) driving factors, and their combination resulted in 4 parameterizations. The combination of model outcomes produced maps of spatial uncertainty of future LUCC. This work involves literature to future-based LUCC studies. It goes beyond the uncertainty of simulation models by integrating the unceertainty of the future to provide maps to help decision makers and land managers
Constraints on anomalous QGC's in interactions from 183 to 209 GeV
The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
- …
