75 research outputs found
Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood
Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity— have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of ¹⁵N to ¹⁴N, termed δ¹⁵N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ¹⁵N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ¹⁵N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ¹⁵N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ¹⁵N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions
Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient
The natural abundance of stable 15N isotopes in soils and plants is potentially a simple tool to assess ecosystem N dynamics. Several open questions remain, however, in particular regarding the mechanisms driving the variability of foliar δ15N values of non-N2 fixing plants within and across ecosystems. The goal of the work presented here was therefore to: (1) characterize the relationship between soil net mineralization and variability of foliar Δδ15N (δ15Nleaf − δ15Nsoil) values from 20 different plant species within and across 18 grassland sites; (2) to determine in situ if a plant’s preference for NO3− or NH4+ uptake explains variability in foliar Δδ15N among different plant species within an ecosystem; and (3) test if variability in foliar Δδ15N among species or functional group is consistent across 18 grassland sites. Δδ15N values of the 20 different plant species were positively related to soil net mineralization rates across the 18 sites. We found that within a site, foliar Δδ15N values increased with the species’ NO3− to NH4+ uptake ratios. Interestingly, the slope of this relationship differed in direction from previously published studies. Finally, the variability in foliar Δδ15N values among species was not consistent across 18 grassland sites but was significantly influenced by N mineralization rates and the abundance of a particular species in a site. Our findings improve the mechanistic understanding of the commonly observed variability in foliar Δδ15N among different plant species. In particular we were able to show that within a site, foliar δ15N values nicely reflect a plant’s N source but that the direction of the relationship between NO3− to NH4+ uptake and foliar Δδ15N values is not universal. Using a large set of data, our study highlights that foliar Δδ15N values are valuable tools to assess plant N uptake patterns and to characterize the soil N cycle across different ecosystems
Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector
Headwater Mires Constitute a Major Source of Nitrogen (N) to Surface Waters in the Boreal Landscape
Belowground nitrogen dynamics in relation to hurricane damage along a tropical dry forest chronosequence
Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests
Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming
Air temperatures are rising and the winter snowpack is getting thinner in many high-latitude and high-elevation ecosystems around the globe. Past studies show that soil warming accelerates microbial metabolism and stimulates soil carbon (C) and nitrogen (N) cycling. Conversely, winter snow removal to simulate loss of snow cover leads to increased soil freezing and reductions in soil microbial biomass, exoenzyme activity, and N cycling. The Climate Change Across Seasons Experiment (CCASE), located at Hubbard Brook Experimental Forest, NH (USA) is designed to evaluate the combined effects of growing season soil warming and an increased frequency of winter soil freeze-thaw cycles on a northern forest ecosystem. Soils were collected from CCASE over two years (2014 and 2015) and extractable C and N pool sizes, as well as microbial biomass, exoenzymes, and potential net N mineralization and microbial respiration were measured. Soil warming alone did not stimulate microbial activity at any sampling time. Extractable amino acid N and organic C, proteolytic and acid phosphatase activity, and microbial respiration were reduced by the combination of warming in the growing season and winter soil freeze-thaw cycles during the period following snowmelt through tree leaf out in spring. The declines in microbial activity also coincided with an 85% decline in microbial biomass N at that time. Growing season warming and winter soil freeze-thaw cycles also resulted in a two-fold reduction in phenol oxidase activity and a 20% reduction in peroxidase activity and these declines persisted throughout the snow-free time of the year. The results from this study suggest that positive feedbacks between warming and rates of soil C and N cycling over the next 100 years will be partially mitigated by an increased frequency of winter soil freeze-thaw cycles, which decrease microbial biomass and rates of soil microbial activity
Recommended from our members
Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming
Air temperatures are rising and the winter snowpack is getting thinner in many high-latitude and high-elevation ecosystems around the globe. Past studies show that soil warming accelerates microbial metabolism and stimulates soil carbon (C) and nitrogen (N) cycling. Conversely, winter snow removal to simulate loss of snow cover leads to increased soil freezing and reductions in soil microbial biomass, exoenzyme activity, and N cycling. The Climate Change Across Seasons Experiment (CCASE), located at Hubbard Brook Experimental Forest, NH (USA) is designed to evaluate the combined effects of growing season soil warming and an increased frequency of winter soil freeze-thaw cycles on a northern forest ecosystem. Soils were collected from CCASE over two years (2014 and 2015) and extractable C and N pool sizes, as well as microbial biomass, exoenzymes, and potential net N mineralization and microbial respiration were measured. Soil warming alone did not stimulate microbial activity at any sampling time. Extractable amino acid N and organic C, proteolytic and acid phosphatase activity, and microbial respiration were reduced by the combination of warming in the growing season and winter soil freeze-thaw cycles during the period following snowmelt through tree leaf out in spring. The declines in microbial activity also coincided with an 85% decline in microbial biomass N at that time. Growing season warming and winter soil freeze-thaw cycles also resulted in a two-fold reduction in phenol oxidase activity and a 20% reduction in peroxidase activity and these declines persisted throughout the snow-free time of the year. The results from this study suggest that positive feedbacks between warming and rates of soil C and N cycling over the next 100 years will be partially mitigated by an increased frequency of winter soil freeze-thaw cycles, which decrease microbial biomass and rates of soil microbial activity
Recommended from our members
Fog as a source of nitrogen for redwood trees: Evidence from fluxes and stable isotopes
A defining feature of the redwood forest in coastal California is the presence of fog in the summer months, a time when there is typically little rainfall. Our goal was to determine the role of summer fog in canopy transformation of nitrogen, nitrogen uptake by trees and photosynthesis within a coastal redwood forest ecosystem. We measured horizontal and vertical inputs of nitrogen, the isotopic composition of nitrogen in a variety of atmospheric sources (summer fog, winter rain and throughfall throughout the year), nitrogen pools (soil solution) and plant tissue (roots and foliage), as well as rates of photosynthesis and nitrogen uptake by trees. Throughfall nitrogen fluxes were greater at the forest edge compared to the interior both within the canopy (sampled 10m above-ground) and onto the forest floor (sampled 1m above-ground; P<0.05). Similarly, soil solution NO3- and total inorganic nitrogen were greater at the forest edge compared to the interior (P=0.0014 and 0.009, respectively). Whereas natural abundance δ15NO3 values were not significantly different between winter rain (measured as bulk precipitation) and summer fog water (average δ15N=-1.2±0.680/00), δ15NH4 values were significantly greater in fog water (11.4±2.70/00) compared to rain (1.2±0.90/00). We found no difference in δ15N in roots from forest edge trees compared to interior trees. In contrast, nitrogen concentrations and δ15N in foliage from forest edge trees were significantly greater compared to interior trees (P<0.0001), suggesting that the leaves of forest edge trees may be obtaining a greater proportion of their nitrogen from fog compared to those of the interior trees. Natural abundance 13C of leaf sugars and rates of photosynthesis were significantly higher at the forest edge compared to the interior during the fog season (P<0.05), but not different between locations in the rain season (P>0.05). Nitrification in the forest floor, rather than the canopy, is the primary source of NO3- in these soils throughout the year. Synthesis. Summer fog provides nitrogen directly and indirectly to redwood trees, especially those at the forest edge, and affects the physiologic function of redwood trees. Summer fog provides nitrogen directly and indirectly to redwood trees, especially those at the forest edge, and affects the physiologic function of redwood trees
- …
