6,910 research outputs found
Stable quark stars beyond neutran stars : can they account for the missing matter ?
The structure of a spherically symmetric stable dark 'star' is discussed, at
zero temperature, containing 1) a core of quarks in the deconfined phase and
antileptons 2) a shell of hadrons in particular , , and
and leptons or antileptons and 3) a shell of hydrogen in the
superfluid phase. If the superfluid hydrogen phase goes over into the
electromagnetic plasma phase at densities well below one atom / ,
as is usually assumed, the hydrogen shell is insignificant for the mass and the
radius of the 'star'. These quantities are then determined approximatively :
mass = 1.8 solar masses and radius = 9.2 km. On the contrary if densities of
the order of one atom / do form a stable hydrogen superfluid
phase, we find a large range of possible masses from 1.8 to 375 solar masses.
The radii vary accordingly from 9 to 1200 km.Comment: 5 pages, 2 figures, contribution to Strange Quark Matter conference,
Frankfurt, Germany, Sept. 200
Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)
Besides the dedicated search for strangelets NA52 measures light
(anti)particle and (anti)nuclei production over a wide range of rapidity.
Compared to previous runs the statistics has been increased in the 1998 run by
more than one order of magnitude for negatively charged objects at different
spectrometer rigidities. Together with previous data taking at a rigidity of
-20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3
without centrality requirements. We measured nuclei and antinuclei
(p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter
range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei
are mainly produced via the coalescence mechanism. However the centrality
dependence of the antibaryon to baryon ratios show that antibaryons are
diminished due to annihilation and breakup reactions in the hadron dense
environment. The volume of the particle source extracted from coalescence
models agrees with results from pion interferometry for an expanding source.
The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide
with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference
on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept.
25-29, 200
Spontaneous Magnetization and Electron Momentum Density in 3D Quantum Dots
We discuss an exactly solvable model Hamiltonian for describing the
interacting electron gas in a quantum dot. Results for a spherical square well
confining potential are presented. The ground state is found to exhibit
striking oscillations in spin polarization with dot radius at a fixed electron
density. These oscillations are shown to induce characteristic signatures in
the momentum density of the electron gas, providing a novel route for direct
experimental observation of the dot magnetization via spectroscopies sensitive
to the electron momentum density.Comment: 5 pages (Revtex4), 4 (eps) figure
A liquid Xenon Positron Emission Tomograph for small animal imaging : first experimental results of a prototype cell
A detector using liquid Xenon (LXe) in the scintillation mode is studied for
Positron Emission Tomography (PET) of small animals. Its specific design aims
at taking full advantage of the Liquid Xenon scintillation properties. This
paper reports on energy, time and spatial resolution capabilities of the first
LXe prototype module equipped with a Position Sensitive Photo- Multiplier tube
(PSPMT) operating in the VUV range (178 nm) and at 165 K. The experimental
results show that such a LXe PET configuration might be a promising solution
insensitive to any parallax effect.Comment: 34 pages, 18 pages, to appear in NIM
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be
responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal
electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the
shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS)
facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD)
instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm
scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high
value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a
deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at
a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with
absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and
persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed.
Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results,
beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation
instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of
collisionless absorption in the LPI energy balance
Two-particle interference of electron pairs on a molecular level
We investigate the photo-doubleionization of molecules with 400 eV
photons. We find that the emitted electrons do not show any sign of two-center
interference fringes in their angular emission distributions if considered
separately. In contrast, the quasi-particle consisting of both electrons (i.e.
the "dielectron") does. The work highlights the fact that non-local effects are
embedded everywhere in nature where many-particle processes are involved
Entrepreneurial sons, patriarchy and the Colonels' experiment in Thessaly, rural Greece
Existing studies within the field of institutional entrepreneurship explore how entrepreneurs influence change in economic institutions. This paper turns the attention of scholarly inquiry on the antecedents of deinstitutionalization and more specifically, the influence of entrepreneurship in shaping social institutions such as patriarchy. The paper draws from the findings of ethnographic work in two Greek lowland village communities during the military Dictatorship (1967–1974). Paradoxically this era associated with the spread of mechanization, cheap credit, revaluation of labour and clear means-ends relations, signalled entrepreneurial sons’ individuated dissent and activism who were now able to question the Patriarch’s authority, recognize opportunities and act as unintentional agents of deinstitutionalization. A ‘different’ model of institutional change is presented here, where politics intersects with entrepreneurs, in changing social institutions. This model discusses the external drivers of institutional atrophy and how handling dissensus (and its varieties over historical time) is instrumental in enabling institutional entrepreneurship
Driving current through single organic molecules
We investigate electronic transport through two types of conjugated
molecules. Mechanically controlled break-junctions are used to couple thiol
endgroups of single molecules to two gold electrodes. Current-voltage
characteristics (IVs) of the metal-molecule-metal system are observed. These
IVs reproduce the spatial symmetry of the molecules with respect to the
direction of current flow. We hereby unambigously detect an intrinsic property
of the molecule, and are able to distinguish the influence of both the molecule
and the contact to the metal electrodes on the transport properties of the
compound system.Comment: 4 pages, 5 figure
Observation Uncertainty in Reversible Markov Chains
In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov Chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+)
Mechanisms of photo double ionization of helium by 530 eV photons
We have measured fully differential cross sections for photo double ionization of helium 450eV above the threshold. We have found an extremely asymmetric energy sharing between the photoelectrons and an angular asymmetry parameter β≃2 and β≃0 for the fast and slow electrons, respectively. The electron angular distributions show a dominance of the shakeoff for 2eV electrons and clear evidence of an inelastic electron-electron scattering at an electron energy of 30eV. The data are in excellent agreement with convergent close-coupling calculations
- …
