18,040 research outputs found
Recommended from our members
Laser wakefield and direct acceleration in the plasma bubble regime
Laser wakefield acceleration (LWFA) and direct laser acceleration (DLA) are two different kinds of laser plasma electron acceleration mechanisms. LWFA relies on the laser-driven plasma wave to accelerate electrons. The interaction of ultra-short ultra-intensive laser pulses with underdense plasma leads the LWFA into a highly nonlinear regime (“plasma bubble regime”) that attracts particular interest nowadays. DLA accelerates electrons by laser electromagnetic wave in the ion channel or the plasma bubble through the Betatron resonance. This dissertation presents a hybrid laser plasma electron acceleration mechanism. We investigate its features through particle-in-cell (PIC) simulations and the single particle model. The hybrid laser plasma electron acceleration is the merging concept between the LWFA and the DLA, so called laser wakefield and direct acceleration (LWDA). The requirements of the initial conditions of the electron to undergo the LWDA are determined. The electron must have a large initial transverse energy. Two electron injection mechanisms that are suitable for the LWDA, density bump injection and ionization induced injection, are studied in detail. The features of electron beam phase space and electron dynamics are explored. Electron beam phase space appears several unique features such as spatially separated two groups, the correlation between the transverse energy and the relativistic factor and the double-peak spectrum. Electrons are synergistically accelerated by the wakefield as well as by the laser electromagnetic field in the laser-driven plasma bubble. LWDA are also investigated in the moderate power regime (10 TW) in regarding the effects of laser color and polarization. It is found that the frequency upshift laser pulse has better performance on avoiding time-jitter of electron energy spectra, electron final energy and electron charge yield. Some basic characters that related to the LWDA such as the effects of the subluminal laser wave, the effects of the longitudinal accelerating field, the electron beam emittance, the electron charge yield and potentially applications as radiation source are discussed.Physic
Low Loss Metamaterials Based on Classical Electromagnetically Induced Transparency
We demonstrate theoretically that electromagnetically induced transparency
can be achieved in metamaterials, in which electromagnetic radiation is
interacting resonantly with mesoscopic oscillators rather than with atoms. We
describe novel metamaterial designs that can support full dark resonant state
upon interaction with an electromagnetic beam and we present results of its
frequency-dependent effective permeability and permittivity. These results,
showing a transparency window with extremely low absorption and strong
dispersion, are confirmed by accurate simulations of the electromagnetic field
propagation in the metamaterial
Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)
The atomic and electronic structure of positively charged P vacancies on
InP(110) surfaces is determined by combining scanning tunneling microscopy,
photoelectron spectroscopy, and density-functional theory calculations. The
vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge
transfer level 0.75+-0.1 eV above the valence band maximum. The scanning
tunneling microscopy (STM) images show only a time average of two degenerate
geometries, due to a thermal flip motion between the mirror configurations.
This leads to an apparently symmetric STM image, although the ground state
atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Recurrence of bipolar disorders andmajor depression: A life-longperspective
Abstract.: Objective: : It is not known whether the risk of recurrence declines with time in bipolar disorders and in major depression. This study describes the life-long recurrence risk of bipolar I, bipolar II and major depressive disorders. Method: : 160 bipolar-I, 60 bipolar-II and 186 depressive patients hospitalised between 1959 and 1963 were followed up every five years from 1965 to 1985. The course prior to the index hospitalisation was assessed in retrospect. The recurrence risk was computed by the multiplicative intensity model (Aalen et al. 1980). Results: : The cumulative intensity curves for the transition from states of remission to new episodes remained linear over 30 to 40 years after onset, indicating a constant risk of recurrence over the life-span up to the age of 70 or more. The recurrence risk of bipolar disorders (0.40 episodes per year) was about twice that of depression (0.20 episodes per year); BP-II disorders had only a slightly higher recurrence risk than BP-I disorders. There were no significant gender differences in the course of either bipolar or depressive disorders. Conclusion: : If long-term trials confirm its efficacy, these results support lifelong prophylactic treatment of severe types of mood disorder
The combinatorics of adinkras
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 67-69).Adinkras are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown nontrivial connections with coding theory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. In this work, we make a self-contained treatment of the mathematical foundations of adinkras that slightly generalizes the existing literature. Then, we make new connections to other areas including homological algebra, theory of polytopes, Pfaffian orientations, graph coloring, and poset theory. Selected results include the enumeration of odd dashings for all adinkraizable chromotopologies, the notion of Stiefel-Whitney classes for codes and their vanishing conditions, and the enumeration of all Hamming cube adinkras up through dimension 5.by Yan Zhang.Ph.D
Managed Bumblebees Outperform Honeybees in Increasing Peach Fruit Set in China: Different Limiting Processes with Different Pollinators
© 2015 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article
Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties
Intermetallic Heusler alloys are amongst the most attractive half-metallic
systems due to the high Curie temperatures and the structural similarity to the
binary semiconductors. In this review we present an overview of the basic
electronic and magnetic properties of both Heusler families: the so-called
half-Heusler alloys like NiMnSb and the the full-Heusler alloys like
CoMnGe. \textit{Ab-initio} results suggest that both the electronic and
magnetic properties in these compounds are intrinsically related to the
appearance of the minority-spin gap. The total spin magnetic moment
scales linearly with the number of the valence electrons , such that
for the full-Heusler and for the half-Heusler alloys,
thus opening the way to engineer new half-metallic alloys with the desired
magnetic properties.Comment: 28 pages, submitted for a special issue of 'Journal of Physics D:
Applied Physics' on Heusler alloy
Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams
We report the first experimental demonstration of conditional preparation of
a non classical state of light in the continuous variable regime. Starting from
a non degenerate OPO which generates above threshold quantum intensity
correlated signal and idler "twin beams", we keep the recorded values of the
signal intensity only when the idler falls inside a band of values narrower
than its standard deviation. By this very simple technique, we generate a
sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of
noise reduction in the intensity difference.Comment: 4 pages, Accepted in Phys. Rev. Let
- …
