49,815 research outputs found
Surface figure measurements of radio telescopes with a shearing interferometer
A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope’s focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 µm, or λ/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 µm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation
Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation
We present here an investigation of the chemical composition of the various regions in the core of the
Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the
1.3 mm (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation
and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry.
A global analysis of the observed abundances shows that the markedly different chemical compositions of
the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving,
initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition
of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C_3H_2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven toward kinetic equilibrium most naturally explains the prominence of fully hydrogenated
N-containing species like HCN, NH_3 , CH_3CN, and C_2H_5CN in the hot core. The clumpy nature of the outflow is illustrated by the high-velocity emission observed from easily decomposed molecules such as H_2CO. Areas immediately adjacent to the shocked core in which the cooler, ion-rich gas of the surrounding molecular cloud is mixed with water/oxygen rich gas from the plateau source are proposed to give rise to the enhanced abundances of complex internal rotors such as CH_30H, HCOOCH_3 , and CH_30CH_3 whose line widths are similar to carbon-rich species such as CN and CCH found in the extended ridge, but whose rotational temperatures are somewhat higher and whose spatial extents are much more compact
Determination of wind tunnel constraint effects by a unified pressure signature method. Part 2: Application to jet-in-crossflow
The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant
Determination of wind tunnel constraint effects by a unified pressure signature method. Part 1: Applications to winged configurations
A new, fast, non-iterative version of the "Wall Pressure Signature Method" is described and used to determine blockage and angle-of-attack wind tunnel corrections for highly-powered jet-flap models. The correction method is complemented by the application of tangential blowing at the tunnel floor to suppress flow breakdown there, using feedback from measured floor pressures. This tangential blowing technique was substantiated by subsequent flow investigations using an LV. The basic tests on an unswept, knee-blown, jet flapped wing were supplemented to include the effects of slat-removal, sweep and the addition of unflapped tips. C sub mu values were varied from 0 to 10 free-air C sub l's in excess of 18 were measured in some cases. Application of the new methods yielded corrected data which agreed with corresponding large tunnel "free air" resuls to within the limits of experimental accuracy in almost all cases. A program listing is provided, with sample cases
Gust alleviation system to improve ride comfort of light airplanes
System consists of movable auxiliary aerodynamic sensors mounted on fuselage and connected to trailing-edge flaps by rigid mechanical linkages. System achieves alleviation by reducing lift-curve slope of airplane to such a small value that gust-induced angles of attack will result in small changes in lift
The association between life events, social support, and antibody status following thymus-dependent and thymus-independent vaccinations in healthy young adults
This study determined whether stressful life events and social support were related to antibody status following both thymus-dependent and thymus-independent vaccinations. Life events in the previous year and customary social support were measured in 57 healthy students at baseline. Antibody status was also assessed at baseline and at five weeks and five months following vaccination with the trivalent influenza vaccine and the meningococcal A+C polysaccharide vaccine. Taking into account baseline antibody titre, high life events scores prior to vaccination were associated with lower responses to the B/Shangdong influenza strain at both five weeks and five months and meningococcal C at five weeks. Life events scores were not associated with response to the other two influenza viral strains nor response to meningococcal A. Those with high social support scores had stronger 5-week and 5-month antibody responses to the A/Panama influenza strain, but not to any of the other strains. These associations could not be accounted for by demographic or health behaviour factors, and also emerged from analyses comparing those who exhibited a four-fold increase in antibody titre from baseline with those who did not. Life events and social support were related to antibody status following influenza vaccination in distinctive ways that may be partly determined by vaccine novelty and prior naturalistic exposure. Life events also predicted poor antibody response to meningococcal C polysaccharide vaccination after previous meningococcal C conjugate vaccination. Neither psychosocial factor was associated with response to primary meningococcal A polysaccharide vaccination
Specific heat of BaKFeAs, and a new method for identifying the electron contribution: two electron bands with different energy gaps in the superconducting state
We report measurements of the specific heat of
BaKFeAs, an Fe-pnictide superconductor with
= 36.9 K, for which there are suggestions of an unusual electron pairing
mechanism. We use a new method of analysis of the data to derive the parameters
characteristic of the electron contribution. It is based on comparisons of
-model expressions for the electron contribution with the total
measured specific heat, which give the electron contribution directly. It
obviates the need in the conventional analyses for an independent, necessarily
approximate, determination of the lattice contribution, which is subtracted
from the total specific heat to obtain the electron contribution. It eliminates
the uncertainties and errors in the electron contribution that follow from the
approximations in the determination of the lattice contribution. Our values of
the parameters characteristic of the electron contribution differ significantly
from those obtained in conventional analyses of specific-heat data for five
similar hole-doped BaFeAs superconductors, which also differ
significantly among themselves. They show that the electron density of states
is comprised of contributions from two electron bands with
superconducting-state energy gaps that differ by a factor 3.8, with 77
coming from the band with the larger gap. The variation of the specific heat
with magnetic field is consistent with extended -wave pairing, one of the
theoretical predictions. The relation between the densities of states and the
energy gaps in the two bands is not consistent with a theoretical model based
on interband interactions alone. Comparison of the normal-state density of
states with band-structure calculations shows an extraordinarily large
effective mass enhancement, for which there is no precedent in similar
materials and no theoretical explanation.Comment: 30 pages, 7 figures, submitte
Slow Dynamics in Glasses
Minimalist theories of complex systems are broadly of two kinds: mean-field
and axiomatic. So far all theories of complex properties absent from simple
systems and intrinsic to glasses are axiomatic. Stretched Exponential
Relaxation (SER) is the prototypical complex temporal property of glasses,
discovered by Kohlrausch 150 years ago, and now observed almost universally in
microscopically homogeneous, complex non-equilibrium materials, including
luminescent electronic (Coulomb) glasses. Critical comparison of alternative
axiomatic theories with both numerical simulations and experiments strongly
favors dynamical trap models over static percolative or energy landscape
models.
PACS: 61.20.Lc; 67.40.F
The Most Severe Test for Hydrophobicity Scales: Two Proteins with 88% Sequence Identity but Different Structure and Function
Protein-protein interactions (protein functionalities) are mediated by water,
which compacts individual proteins and promotes close and temporarily stable
large-area protein-protein interfaces. In their classic paper Kyte and
Doolittle (KD) concluded that the "simplicity and graphic nature of
hydrophobicity scales make them very useful tools for the evaluation of protein
structures". In practice, however, attempts to develop hydrophobicity scales
(for example, compatible with classical force fields (CFF) in calculating the
energetics of protein folding) have encountered many difficulties. Here we
suggest an entirely different approach, based on the idea that proteins are
self-organized networks, subject to finite-scale criticality (like some network
glasses). We test this proposal against two small proteins that are delicately
balanced between alpha and alpha/beta structures, with different functions
encoded with only 12% of their amino acids. This example explains why protein
structure prediction is so challenging, and it provides a severe test for the
accuracy and content of hydrophobicity scales. The new method confirms KD's
evaluation, and at the same time suggests that protein structure, dynamics and
function can be best discussed without using CFF
- …
