5,153 research outputs found
Rayleigh-Schroedinger-Goldstone variational perturbation theory for many fermion systems
We present a Rayleigh-Schroedinger-Goldstone perturbation formalism for many
fermion systems. Based on this formalism, variational perturbation scheme which
goes beyond the Gaussian approximation is developed. In order to go beyond the
Gaussian approximation, we identify a parent Hamiltonian which has an effective
Gaussian vacuum as a variational solution and carry out further perturbation
with respect to the renormalized interaction using Goldstone's expansion.
Perturbation rules for the ground state wavefunctional and energy are found.
Useful commuting relations between operators and the Gaussian wavefunctional
are also found, which could reduce the calculational efforts substantially. As
examples, we calculate the first order correction to the Gaussian
wavefunctional and the second order correction to the ground state of an
electron gas system with the Yukawa-type interaction.Comment: 11pages, 1figur
New class of 3D topological insulator in double perovskite
We predict a new class of three-dimensional topological insulators (TIs) in
which the spin-orbit coupling (SOC) can more effectively generate a large band
gap at point. The band gap of conventional TI such as BiSe is
mainly limited by two factors, the strength of SOC and, from electronic
structure perspective, the band gap when SOC is absent. While the former is an
atomic property, we find that the latter can be minimized in a generic
rock-salt lattice model in which a stable crossing of bands {\it at} the Fermi
level along with band character inversion occurs for a range of parameters in
the absence of SOC. Thus, large-gap TI's or TI's comprised of lighter elements
can be expected. In fact, we find by performing first-principle calculations
that the model applies to a class of double perovskites ABiXO (A = Ca,
Sr, Ba; X = Br, I) and the band gap is predicted up to 0.55 eV. Besides, more
detailed calculations considering realistic surface structure indicate that the
Dirac cones are robust against the presence of dangling bond at the boundary
with a specific termination.Comment: submitted; title changed and new references added; see DOI for
published versio
Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In2O3) nanowire phase change random access memory
The resistance stability and thermal resistance of phase change memory devices using similar to 40 nm diameter Ga-doped In2O3 nanowires (Ga:In2O3 NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R-0 ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R-th) increases with higher Ga-concentration and thus the power consumption can be reduced by similar to 90% for the 11.5% Ga: In2O3 NW, compared to the 2.1% Ga: In2O3 NW. The excellent characteristics of Ga-doped In2O3 nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications. (C) 2014 AIP Publishing LLC.X113sciescopu
Alibaba's strategic drift
It is fundamental in both a theoretical and practical sense, to analyse the strategies of successful e-businesses who were formulated and operated alongside incumbent competitors. Thus, there have been an array of strategic arguments concerning the rapidly-burgeoning virtual powerhouse Alibaba, who amidst a sea of fortified competitors, found their ground to become one of the most prominent e-businesses of the decade. At the commencing stages, Alibaba lacked a specific strategic goal, aside from the ethnic-originated ecology scheme. Further mishaps arose even after the take-off stage, when Alibaba opted to adhere to the diversification strategy, an evidently unusual phase for a virtual firm. Hence, it is the subject of common debate as to whether Alibaba cited a definitive strategic goal which guided their progress, or whether they were merely the product of a breakneck growth in the Chinese economy. This research will show how a leading e-Commerce company Alibaba has built B2B/C2C business portal Taobao/TMall and has transformed its transaction system from zhifubao into yuerbao and how it propelled Alipay to become a leading financial institution in the thriving digital market. In addition, strategic diversification on Chinese digital business will be examined through Alibaba case
Structure, Transport and Magnetic properties in LaSrCoRuO
The perovskite solid solutions of the type
LaSrCoRuO with 0.25 x
0.75 have been investigated for their structural, magnetic and transport
properties. All the compounds crystallize in double perovskite structure. The
magnetization measurements indicate a complex magnetic ground state with strong
competition between ferromagnetic and antiferromagnetic interactions.
Resistivity of the compounds is in confirmation with hopping conduction
behaviour though differences are noted especially for = 0.4 and 0.6. Most
importantly, low field (50Oe) magnetization measurements display negative
magnetization during the zero field cooled cycle. X-ray photoelectron
spectroscopy measurements indicate presence of Co/Co and
Ru/Ru redox couples in all compositions except = 0.5.
Presence of magnetic ions like Ru and Co gives rise to additional
ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the
observed negative magnetization.Comment: Accepted for publication in J. Magn. Magn. Mate
Zero mode in the time-dependent symmetry breaking of theory
We apply the quartic exponential variational approximation to the symmetry
breaking phenomena of scalar field in three and four dimensions. We calculate
effective potential and effective action for the time-dependent system by
separating the zero mode from other non-zero modes of the scalar field and
treating the zero mode quantum mechanically. It is shown that the quantum
mechanical properties of the zero mode play a non-trivial role in the symmetry
breaking of the scalar theory.Comment: 10 pages, 3 figure
Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2.
Although bone morphogenetic protein-2 (BMP2) has demonstrated extraordinary potential in bone formation, its clinical applications require supraphysiological milligram-level doses that increase postoperative inflammation and inappropriate adipogenesis, resulting in well-documented life-threatening cervical swelling and cyst-like bone formation. Recent promising alternative biomolecular strategies are toward promoting pro-osteogenic activity of BMP2 while simultaneously suppressing its adverse effects. Here, we demonstrated that small molecular phenamil synergized osteogenesis and bone formation with BMP2 in a rat critical size mandibular defect model. Moreover, we successfully elicited the BMP2 adverse outcomes (i.e. adipogenesis and inflammation) in the mandibular defect by applying high dose BMP2. Phenamil treatment significantly improves the quality of newly formed bone by inhibiting BMP2 induced fatty cyst-like structure and inflammatory soft-tissue swelling. The observed positive phenamil effects were associated with upregulation of tribbles homolog 3 (Trib3) that suppressed adipogenic differentiation and inflammatory responses by negatively regulating PPARγ and NF-κB transcriptional activities. Thus, use of BMP2 along with phenamil stimulation or Trib3 augmentation may be a promising strategy to improve clinical efficacy and safety of current BMP therapeutics
Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals
Magnetic doping of semiconductor nanostructures is actively pursued for
applications in magnetic memory and spin-based electronics. Central to these
efforts is a drive to control the interaction strength between carriers
(electrons and holes) and the embedded magnetic atoms. In this respect,
colloidal nanocrystal heterostructures provide great flexibility via
growth-controlled `engineering' of electron and hole wavefunctions within
individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d
exchange interaction between electron-hole excitations (excitons) and
paramagnetic manganese ions using `inverted' core-shell nanocrystals composed
of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe.
Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the
band-edge exciton that, surprisingly, are tunable in both magnitude and sign.
Effective exciton g-factors are controllably tuned from -200 to +30 solely by
increasing the CdSe shell thickness, demonstrating that strong quantum
confinement and wavefunction engineering in heterostructured nanocrystal
materials can be utilized to manipulate carrier-Mn wavefunction overlap and the
sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf
Axion Dissipation Through the Mixing of Goldstone Bosons
By coupling axions strongly to a hidden sector, the energy density in
coherent axions may be converted to radiative degrees of freedom, alleviating
the ``axion energy crisis''. The strong coupling is achieved by mixing the
axion and some other Goldstone boson through their kinetic energy terms, in a
manner reminiscent of paraphoton models. Even with the strong coupling it
proves difficult to relax the axion energy density through particle absorption,
due to the derivative nature of Goldstone boson couplings and the effect of
back reactions on the evolution of the axion number density. However, the
distribution of other particle species in the hidden sector will be driven from
equilibrium by the axion field oscillations. Restoration of thermal equilibrium
results in energy being transferred from the axions to massless particles,
where it can redshift harmlessly without causing any cosmological problems.Comment: 20 pages, Latex, (3 uuencoded compressed tarred postscript figures
attached
Perturbative Expansion around the Gaussian Effective Potential of the Fermion Field Theory
We have extended the perturbative expansion method around the Gaussian
effective action to the fermionic field theory, by taking the 2-dimensional
Gross-Neveu model as an example. We have computed both the zero temperature and
the finite temperature effective potentials of the Gross-Neveu model up to the
first perturbative correction terms, and have found that the critical
temperature, at which dynamically broken symmetry is restored, is significantly
improved for small value of the flavour number.Comment: 14pages, no figures, other comments Typographical errors are
corrected and new references are adde
- …
