10 research outputs found

    Controlled release from triple layer, donut-shaped tablets with enteric polymers

    No full text
    The purpose of this research was to evaluate triple layer, donut-shaped tablets (TLDSTs) for extended release dosage forms. TLDSTs were prepared by layering 3 powders sequentially after pressing them with a punch. The core tablet consisted of enteric polymers, mainly hydroxypropyl methylcellulose acetate succinate, and the bottom and top layers were made of a water-insoluble polymer, ethyl cellulose. Drug release kinetics were dependent on the pH of the dissolution medium and the drug properties, such as solubility, salt forms of weak acid and weak base drugs, and drug loading. At a 10% drug loading level, all drugs, regardless of their type or solubility, yielded the same release profiles within an acceptable level of experimental error. As drug loading increased from 10% to 30%, the drug release rate of neutral drugs increased for all except sulfathiazole, which retained the same kinetics as at 10% loading. HCl salts of weak base drugs had much slower release rates than did those of neutral drugs (eg, theophylline) as drug loading increased. The release of labetalol HCl retarded as drug loading increased from 10% to 30%. On the other hand, Na salts of weak acid drugs had much higher release rates than did those of neutral drugs (eg, theophylline). Drug release kinetics were governed by the ionization/erosion process with slight drug diffusion, observing no perfect straight line. A mathematical expression for drug release kinetics (erosion-controlled system) of TLDSTs is presented. In summary, a TLDST is a good design to obtain zero-order or nearly zero-order release kinetics for a wide range of drug solubilities

    A Design and Evaluation of Layered Matrix Tablet Formulations of Metoprolol Tartrate

    No full text
    The aim of this paper was to evaluate the performance of different swellable polymers in the form of layered matrix tablets to provide controlled therapeutic effect of metoprolol tartrate for twice daily administration. Seven different swellable polymers (carrageenan, hydroxypropylmethyl cellulose, pectin, guar gum, xanthan gum, chitosan, and ethyl cellulose) were evaluated alone or in combination as release-retardant layer. Tablets were tested for weight variation, hardness, diameter/thickness ratio, friability, and drug content uniformity and subjected to in vitro drug-release studies. In addition, the target-release profile of metoprolol tartrate was plotted using its clinical pharmacokinetic data, and the release profiles of the tablets were evaluated in relation to the plotted target release profile. Carrageenan was determined as the best polymer in two-layered matrix tablet formulations due to its better accordance to the target release profile and was selected for preparing three-layered matrix tablets. Carrageenan formulations exhibited super case II release mechanism. Accelerated stability testing was performed on two- and three-layered matrix tablet formulations of carrageenan. The tablets were stored at 25°C/60% relative humidity and 40°C/75% relative humidity for 6 months and examined for physical appearance, drug content, and release characteristics. At the end of the storage time, formulations showed no change either in physical appearance, drug content, or drug-release profile. These results demonstrated the suitability of three-layered tablet formulation of carrageenan to provide controlled release and improved linearity for metoprolol tartrate in comparison to two-layered tablet formulation

    Investigation on Processing Variables for the Preparation of Fluconazole-Loaded Ethyl Cellulose Microspheres by Modified Multiple Emulsion Technique

    No full text
    Fluconazole-loaded ethyl cellulose microspheres were prepared by alginate facilitated (water-in-oil)-in-water emulsion technology and the effects of various processing variables on the properties of microspheres were investigated. Scanning electron microscopy revealed spherical nature and smooth surface morphology of the microspheres except those prepared at higher concentration of emulsifiers and higher stirring speeds. The size of microspheres varied between 228 and 592 μm, and as high as 80% drug entrapment efficiency was obtained depending upon the processing variables. When compared up to 2 h, the drug release in pH 1.2 HCl solution was slower than in pH 7.4 phosphate buffer saline solution. However, this trend was reversed at high shear conditions. The microspheres provided extended drug release in alkaline dissolution medium and the drug release was found to be controlled by Fickian-diffusion mechanism. However, the mechanism shifted to anomalous diffusion at high shear rates and emulsifier concentrations. The aging of microspheres did not influence the drug release kinetics. However, the physical interaction between drug and excipients affected the drug dissolution behaviors. X-ray diffractometry (X-RD) and differential scanning calorimetry (DSC) analysis revealed amorphous nature of drug in the microspheres. Fourier transform infrared (FTIR) spectroscopy indicated stable character of fluconazole in the microspheres. The stability testing data also supported the stable nature of fluconazole in the microspheres. The fluconazole extracted from 80% drug-loaded formulation showed good in vitro antifungal activity against Candida albicans. Thus, proper control of the processing variables involved in this modified multiple emulsion technology could allow effective incorporation of slightly water soluble drugs into ethyl cellulose microspheres without affecting drug stability

    Gellan

    No full text

    Gellan

    No full text
    corecore