1,622 research outputs found

    Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether

    Full text link
    The Gas Pixel Detector belongs to the very limited class of gas detectors optimized for the measurement of X-ray polarization in the emission of astrophysical sources. The choice of the mixture in which X-ray photons are absorbed and photoelectrons propagate, deeply affects both the energy range of the instrument and its performance in terms of gain, track dimension and ultimately, polarimetric sensitivity. Here we present the characterization of the Gas Pixel Detector with a 1 cm thick cell filled with dimethyl ether (DME) at 0.79 atm, selected among other mixtures for the very low diffusion coefficient. Almost completely polarized and monochromatic photons were produced at the calibration facility built at INAF/IASF-Rome exploiting Bragg diffraction at nearly 45 degrees. For the first time ever, we measured the modulation factor and the spectral capabilities of the instrument at energies as low as 2.0 keV, but also at 2.6 keV, 3.7 keV, 4.0 keV, 5.2 keV and 7.8 keV. These measurements cover almost completely the energy range of the instrument and allows to compare the sensitivity achieved with that of the standard mixture, composed of helium and DME.Comment: 20 pages, 11 figures, 5 tables. Accepted for publication by NIM

    Energy characterization of Pixirad-1 photon counting detector system

    Get PDF
    This work is focused on the characterization of the Pixirad-1 detector system from the spectroscopic point of view. An energy calibration has been carried out using different X-ray sources such as fluorescence lines, synchrotron radiation and radioactive elements. The energy resolution has been measured as function of the energy and the results have been compared with theoretical estimation. Last, the charge sharing fraction has been evaluated by exploiting the monochromatic energy of the Elettra synchrotron beam

    Low energy polarization sensitivity of the Gas Pixel Detector

    Full text link
    An X-ray photoelectric polarimeter based on the Gas Pixel Detector has been proposed to be included in many upcoming space missions to fill the gap of about 30 years from the first (and to date only) positive measurement of polarized X-ray emission from an astrophysical source. The estimated sensitivity of the current prototype peaks at an energy of about 3 keV, but the lack of readily available polarized sources in this energy range has prevented the measurement of detector polarimetric performances. In this paper we present the measurement of the Gas Pixel Detector polarimetric sensitivity at energies of a few keV and the new, light, compact and transportable polarized source that was devised and built to this aim. Polarized photons are produced, from unpolarized radiation generated with an X-ray tube, by means of Bragg diffraction at nearly 45 degrees. The employment of mosaic graphite and flat aluminum crystals allow the production of nearly completely polarized photons at 2.6, 3.7 and 5.2 keV from the diffraction of unpolarized continuum or line emission. The measured modulation factor of the Gas Pixel Detector at these energies is in good agreement with the estimates derived from a Monte Carlo software, which was up to now employed for driving the development of the instrument and for estimating its low energy sensitivity. In this paper we present the excellent polarimetric performance of the Gas Pixel Detector at energies where the peak sensitivity is expected. These measurements not only support our previous claims of high sensitivity but confirm the feasibility of astrophysical X-ray photoelectric polarimetry.Comment: 15 pages, 12 figures. Accepted for publication in NIM

    The imaging properties of the Gas Pixel Detector as a focal plane polarimeter

    Full text link
    X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut f\"ur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPE configuration, discussing also possible improvements by coupling the detector with advanced optics, having finer angular resolution and larger effective area, to study with more details extended objects.Comment: Accepted for publication in The Astrophysical Journal Supplemen

    Subclinical thyroid dysfunction and cognitive decline in old age

    Get PDF
    <p>Background: Subclinical thyroid dysfunction has been implicated as a risk factor for cognitive decline in old age, but results are inconsistent. We investigated the association between subclinical thyroid dysfunction and cognitive decline in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER).</p> <p>Methods: Prospective longitudinal study of men and women aged 70–82 years with pre-existing vascular disease or more than one risk factor to develop this condition (N = 5,154). Participants taking antithyroid medications, thyroid hormone supplementation and/or amiodarone were excluded. Thyroid function was measured at baseline: subclinical hyper- and hypothyroidism were defined as thyroid stimulating hormones (TSH) <0.45 mU/L or >4.50 mU/L respectively, with normal levels of free thyroxine (FT4). Cognitive performance was tested at baseline and at four subsequent time points during a mean follow-up of 3 years, using five neuropsychological performance tests.</p> <p>Results: Subclinical hyperthyroidism and hypothyroidism were found in 65 and 161 participants, respectively. We found no consistent association of subclinical hyper- or hypothyroidism with altered cognitive performance compared to euthyroid participants on the individual cognitive tests. Similarly, there was no association with rate of cognitive decline during follow-up.</p> <p>Conclusion: We found no consistent evidence that subclinical hyper- or hypothyroidism contribute to cognitive impairment or decline in old age. Although our data are not in support of treatment of subclinical thyroid dysfunction to prevent cognitive dysfunction in later life, only large randomized controlled trials can provide definitive evidence.</p&gt

    Subclinical thyroid dysfunction and cognitive decline in old age

    Get PDF
    <p>Background: Subclinical thyroid dysfunction has been implicated as a risk factor for cognitive decline in old age, but results are inconsistent. We investigated the association between subclinical thyroid dysfunction and cognitive decline in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER).</p> <p>Methods: Prospective longitudinal study of men and women aged 70–82 years with pre-existing vascular disease or more than one risk factor to develop this condition (N = 5,154). Participants taking antithyroid medications, thyroid hormone supplementation and/or amiodarone were excluded. Thyroid function was measured at baseline: subclinical hyper- and hypothyroidism were defined as thyroid stimulating hormones (TSH) <0.45 mU/L or >4.50 mU/L respectively, with normal levels of free thyroxine (FT4). Cognitive performance was tested at baseline and at four subsequent time points during a mean follow-up of 3 years, using five neuropsychological performance tests.</p> <p>Results: Subclinical hyperthyroidism and hypothyroidism were found in 65 and 161 participants, respectively. We found no consistent association of subclinical hyper- or hypothyroidism with altered cognitive performance compared to euthyroid participants on the individual cognitive tests. Similarly, there was no association with rate of cognitive decline during follow-up.</p> <p>Conclusion: We found no consistent evidence that subclinical hyper- or hypothyroidism contribute to cognitive impairment or decline in old age. Although our data are not in support of treatment of subclinical thyroid dysfunction to prevent cognitive dysfunction in later life, only large randomized controlled trials can provide definitive evidence.</p&gt

    Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV

    Get PDF
    We present the results of our analysis of cosmic-ray electrons using about 8 million electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously-published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law E3.08±0.05\propto {\rm E}^{-3.08 \pm 0.05} with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV.Comment: 20 pages, 23 figures, 2 tables, published in Physical Review D 82, 092004 (2010) - contact authors: C. Sgro', A. Moisee

    Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes.

    Get PDF
    OBJECTIVE: Multiple endocrine neoplasia type 2 (MEN 2) is a genetic disease characterized by medullary thyroid carcinoma (MTC) associated (MEN 2A and 2B) or not familial MTC (FMTC) with other endocrine neoplasia due to germline RET gene mutations. The prevalence of these rare genetic diseases and their corresponding RET mutations are unknown due to the small size of the study population. METHODS: We collected data on germline RET mutations of 250 families with hereditary MTC followed in 20 different Italian centres. RESULTS AND CONCLUSIONS: The most frequent RET amino acid substitution was Val804Met (19.6%) followed by Cys634Arg (13.6%). A total of 40 different germline RET mutations were present. Six families (2.4%) were negative for germline RET mutations. The comparison of the prevalence of RET germline mutations in the present study with those published by other European studies showed a higher prevalence of Val804Met and Ser891Ala mutations and a lower prevalence of Leu790Phe and Tyr791Phe (P<0.0001). A statistically significant higher prevalence of mutations affecting non-cysteine codons was also found (P<0.0001). Furthermore, the phenotype data collection showed an unexpected higher prevalence of FMTC (57.6%) with respect to other MEN 2 syndromes (34% MEN 2A and 6.8% of MEN 2B). In conclusion, we observed a statistically significant different pattern of RET mutations in Italian MEN 2 families with respect to other European studies and a higher prevalence of FMTC phenotype. The different ethnic origins of the patients and the particular attention given to analysing apparently sporadic MTC for RET germline mutations may explain these findings
    corecore