10,006 research outputs found

    Effective Field Theories for Heavy Quarkonium

    Full text link
    We briefly review how nonrelativistic effective field theories give us a definition of the QCD potentials and a coherent field theory derived quantum mechanical scheme to calculate the properties of bound states made by two or more heavy quarks. In this framework heavy quarkonium properties depend only on the QCD parameters (quark masses and \als) and nonpotential corrections are systematically accounted for. The relation between the form of the nonperturbative potentials and the low energy QCD dynamics is also discussed.Comment: Invited Plenary talk at The 20th European Conference on Few-Body Problems in Physics. September 10-14 2007. Pisa, Italy. To be published on Few-Body System

    Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum

    Get PDF
    We complete the leading-log renormalization group scaling of the NRQCD Lagrangian at O(1/m2)O(1/m^2). The next-to-next-to-leading-log renormalization group scaling of the potential NRQCD Lagrangian (as far as the singlet is concerned) is also obtained in the situation mαsΛQCDm\alpha_s \gg \Lambda_{QCD}. As a by-product, we obtain the heavy quarkonium spectrum with the same accuracy in the situation m\alpha_s^2 \simg \Lambda_{QCD}. When ΛQCDmαs2\Lambda_{QCD} \ll m\alpha_s^2, this is equivalent to obtain the whole set of O(mαs(n+4)lnnαs)O(m\alpha_s^{(n+4)} \ln^n \alpha_s) terms in the heavy quarkonium spectrum. The implications of our results in the non-perturbative situation mαsΛQCDm\alpha_s \sim \Lambda_{QCD} are also mentioned.Comment: 16 pages, LaTeX. Minor changes. Final versio

    Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium

    Get PDF
    We analyze the end-point region of the photon spectrum in semi-inclusive radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We discuss the interplay of the scales arising in the Soft-Collinear Effective Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2. For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be relevant, but the recently discovered soft-collinear modes show up for 1-z << alpha_s^2. The S- and P-wave octet shape functions are calculated. When they are included in the analysis of the photon spectrum of the Upsilon (1S) system, the agreement with data in the end-point region becomes excellent. The NRQCD matrix elements and are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added. Journal versio

    Inclusive Decays of Heavy Quarkonium to Light Particles

    Get PDF
    We derive the imaginary part of the potential NRQCD Hamiltonian up to order 1/m^4, when the typical momentum transfer between the heavy quarks is of the order of Lambda_{QCD} or greater, and the binding energy E much smaller than Lambda_{QCD}. We use this result to calculate the inclusive decay widths into light hadrons, photons and lepton pairs, up to O(mv^3 x (Lambda_{QCD}^2/m^2,E/m)) and O(mv^5) times a short-distance coefficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number of unknown non-perturbative parameters and, therefore, we obtain new model-independent QCD predictions. All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the origin and six universal non-perturbative parameters. The wave-function dependence factorizes and drops out in the ratio of hadronic and electromagnetic decay widths. The universal non-perturbative parameters are expressed in terms of gluonic field-strength correlators, which may be fixed by experimental data or, alternatively, by lattice simulations. Our expressions are expected to hold for most of the charmonium and bottomonium states below threshold. The calculations and methodology are explained in detail so that the evaluation of higher order NRQCD matrix elements in this framework should be straightforward. An example is provided.Comment: 61 pages, 9 figures. Minor change

    The initial conditions of stellar protocluster formation. II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15<l<55

    Get PDF
    We present a catalogue of starless and protostellar clumps associated with infrared dark clouds (IRDCs) in a 40 degrees wide region of the inner Galactic Plane (b<1). We have extracted the far-infrared (FIR) counterparts of 3493 IRDCs with known distance in the Galactic longitude range 15<l<55 and searched for the young clumps using Hi-GAL, the survey of the Galactic Plane carried out with the Herschel satellite. Each clump is identified as a compact source detected at 160, 250 and 350 mum. The clumps have been classified as protostellar or starless, based on their emission (or lack of emission) at 70 mum. We identify 1723 clumps, 1056 (61%) of which are protostellar and 667 (39%) starless. These clumps are found within 764 different IRDCs, 375 (49%) of which are only associated with protostellar clumps, 178 (23%) only with starless clumps, and 211 (28%) with both categories of clumps. The clumps have a median mass of 250 M_sun and range up to >10^4$ M_sun in mass and up to 10^5 L_sun in luminosity. The mass-radius distribution shows that almost 30% of the starless clumps identified in this survey could form high-mass stars, however these massive clumps are confined in only ~4% of the IRDCs. Assuming a minimum mass surface density threshold for the formation of high-mass stars, the comparison of the numbers of massive starless clumps and those already containing embedded sources suggests an upper limit lifetime for the starless phase of 10^5 years for clumps with a mass M>500 M_sun.Comment: accepted for publication in MNRAS. Online catalogues available soon, please contact the authors if intereste

    Quarkonium spectroscopy and perturbative QCD: massive quark-loop effects

    Get PDF
    We study the spectra of the bottomonium and B_c states within perturbative QCD up to order alpha_s^4. The O(Lambda_QCD) renormalon cancellation between the static potential and the pole mass is performed in the epsilon-expansion scheme. We extend our previous analysis by including the (dominant) effects of non-zero charm-quark mass in loops up to the next-to-leading non-vanishing order epsilon^3. We fix the b-quark MSbar mass mˉbmbMSˉ(mbMSˉ)\bar{m}_b \equiv m_b^{\bar{\rm MS}}(m_b^{\bar{\rm MS}}) on Upsilon(1S) and compute the higher levels. The effect of the charm mass decreases mˉb\bar{m}_b by about 11 MeV and increases the n=2 and n=3 levels by about 70--100 MeV and 240--280 MeV, respectively. We provide an extensive quantitative analysis. The size of non-perturbative and higher order contributions is discussed by comparing the obtained predictions with the experimental data. An agreement of the perturbative predictions and the experimental data depends crucially on the precise value (inside the present error) of alpha_s(M_Z). We obtain mbMSˉ(mbMSˉ)=4190±20±25±3 MeVm_b^{\bar{\rm MS}}(m_b^{\bar{\rm MS}}) = 4190 \pm 20 \pm 25 \pm 3 ~ {\rm MeV}.Comment: 33 pages, 21 figures; v2: Abstract modified; Table7 (summary of errors) added; Version to appear in Phys.Rev.

    Ultrasoft Renormalization in Non-Relativistic QCD

    Get PDF
    For Non-Relativistic QCD the velocity renormalization group correlates the renormalization scales for ultrasoft, potential and soft degrees of freedom. Here we discuss the renormalization of operators by ultrasoft gluons. We show that renormalization of soft vertices can induce new operators, and also present a procedure for correctly subtracting divergences in mixed potential-ultrasoft graphs. Our results affect the running of the spin-independent potentials in QCD. The change for the NNLL t-tbar cross section near threshold is very small, being at the 1% level and essentially independent of the energy. We also discuss implications for analyzing situations where mv^2 ~ Lambda_QCD.Comment: 31 pages, 11 fig

    The QCD Potential at O(1/m)O(1/m)

    Get PDF
    Within an effective field theory framework, we obtain an expression for the next-to-leading term in the 1/m1/m expansion of the singlet QQˉQ{\bar Q} QCD potential in terms of Wilson loops, which holds beyond perturbation theory. The ambiguities in the definition of the QCD potential beyond leading order in 1/m1/m are discussed and a specific expression for the 1/m1/m potential is given. We explicitly evaluate this expression at one loop and compare the outcome with the existing perturbative results. On general grounds we show that for quenched QED and fully Abelian-like models this expression exactly vanishes.Comment: 19 pages, LaTeX, 1 figure. Journal version. Discussion refined, misprints corrected, few references added; results unchange

    A trivial observation on time reversal in random matrix theory

    Full text link
    It is commonly thought that a state-dependent quantity, after being averaged over a classical ensemble of random Hamiltonians, will always become independent of the state. We point out that this is in general incorrect: if the ensemble of Hamiltonians is time reversal invariant, and the quantity involves the state in higher than bilinear order, then we show that the quantity is only a constant over the orbits of the invariance group on the Hilbert space. Examples include fidelity and decoherence in appropriate models.Comment: 7 pages 3 figure
    corecore