3,526 research outputs found
Validation of a spectrophotometric method for quantification of xanthone in biodegradable nanoparticles
Xanthone has been incorporated for the first time in nanoparticles of poly(D,L-lactide-co-glycolide) (PLGA). For this purpose the estimation of xanthone content in the nanoparticles is a crucial tool for guaranteeing the reliability of the results. Thus, a simple spectrophotometric method was validated according to USP25 and ICH guidelines for its specificity, linearity, accuracy and precision. The method was found to be specific for xanthone in the presence of nanoparticle excipients. The calibration curve was linear over the concentration range of 0.5 to 4.0 mug/mL (r > 0.999). Recovery of xanthone from nanoparticles ranged from 86.5 to 95.9%. Repeatability (intra-assay precision) and intermediate precision were found to be acceptable with relative standard deviations values (RSD) ranging from 0.3 to 3.0% and from 1.4 to 3.1%, respectively. The method was found to be suitable for the evaluation of xanthone content in nanoparticles of PLGA
Improvement of the inhibitory effect of xanthones on NO production by encapsulation in PLGA nanocapsules
For the first time the inhibitory effect of xanthone and 3-methoxyxanthone on nitric oxide (NO) production by IFN-gamma/LPS activated J774 macrophage cell line is reported. A remarkable improvement of this effect promoted by encapsulation of these compounds in nanocapsules of Poly (DL-lactide-co-glycolide) (PLGA) is also demonstrated. A weak inhibitory effect of 3.6% on NO production by activated macrophages was observed for xanthone at the highest studied concentration (100 mu M). This effect was slightly higher for 3-methoxyxanthone at the same concentration, producing a reduction of 16.5% on NO production. In contrast, equivalent concentrations of xanthone and 3-methoxyxanthone incorporated in nanocapsules produced a significant decrease on NO production of 91.8 and 80.0%, respectively. Empty nanocapsules also exhibited a slight NO inhibitory activity, which may be due to the presence of soybean lecithin in the composition of the nanosystems. The viability of the macrophages was not affected either by free or nanoencapsulated xanthones. Fluorescence microscopy analysis confirmed that a phagocytic process was involved in the macrophage uptake of xanthone- and 3-methoxyxanthone-loaded PLGA nanocapsules. Phagocytosis might be the main mechanism responsible for the enhancement of the intracellular delivery of both compounds and consequently for the improvement of their biological effect
Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone
The aim of the present work was to develop and characterize two different nanosystems, nanospheres and nanocapsules, containing either xanthone (XAN) or 3-methoxyxanthone (3-MeOXAN), with the final goal of improving the delivery of these poorly water-soluble compounds. The xanthones-loaded nanospheres (nanomatrix systems) and nanocapsules (nanoreservoir systems), made of poly(DL-lactide-co-glycolide) (PLGA), were prepared by the solvent displacement technique. The following characteristics of nanoparticle formulations were determined: particle size and morphology, zeta potential, incorporation efficiency, thermal behaviour, in vitro release profiles and physical stability at 4 degrees C. The nanospheres had a mean diameter 77%) were higher than those corresponding to nanospheres for both xanthones. The release of 3-MeOXAN from nanocapsules was similar to that observed for the correspondent nanoemulsion, indicating that drug release is mainly governed by its partition between the oil core and the external aqueous medium. In contrast, the release of XAN from nanocapsules was significantly slower than from the nanoemulsion, a behaviour that suggests an interaction of the drug with the polymer. Nanocapsule formulations exhibited good physical stability at 4 degrees C during a 4-month period for XAN and during a 3-month period for 3-MeOXAN
Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres
The adsorption of a carbohydrate binding module (CBM3) from the Clostridium thermocellum scaffolding protein (CipA) to cellulose was analysed in this work. The effect of CBM-PEG on the drainability of E. globulus and P. sylvestris pulps and on the physical properties of the respective papersheets was also studied. The CBM binding to cellulose is often described as “irreversible”, but this classification does not fully characterize this interaction. Indeed, the results obtained demonstrate that, although the adsorption on cellulose is rather stable, CBM inter-fibre mobility may be observed. The results also showed that the CBM-PEG conjugate improves the drainability of E. globulus and P. sylvestris pulps without affecting the physical properties of the papersheets.This research was supported by Fundacao para a Ciencia e a Tecnologia under grant POCTI/BIO/45356/2002
Target cells of human adenovirus type 12 in subtentorial brain tissue of newborn mice. I. Cyto-histomorphologic and immunofluorescent microscopic studies In vivo
Human adenovirus type 12 (Ad 12) was inoculated through subtentorial route into inbred newborn mice (C3H/BifB/Ki), and sequential changes of the brain and tumor induction were examined by histological and immunofluorescent methods. Two days after virus inoculation, Ad 12 specific tumor antigen (fluorescent T-antigen) appeared in the cells of ependymal and subventricular matrix layers, choroid plexuses and leptomeninges in the subtentorial as well as the supratentorial brains. After 10 days, these fluorescent positive cells decreased gradually in number but still remained focally beneath the ependyma. Sixty days later, early tumor nodules were detected in the same regions in which remained the fluorescent cells. After 107 days, neurological signs and well-developed tumors were noted in 25 of 63 (30.1%) mice examined. In the cerebellum, both of T-antigens and tumors were limited around the IVth ventricle, but not in the granular layers. Histomorphologically, the tumors were of primitive neuroectodermal origin and consisted of the cells resembling immature matrix cells in the subventricular zone. These findings strongly suggest that the virus has a selective affinity to the remaining matrix cells, but not to cerebellar granular cells, at least, in newborn mice.</p
Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.
To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome
Identifying critically important vascular access outcomes for trials in haemodialysis : an international survey with patients, caregivers and health professionals
BACKGROUND:
Vascular access outcomes reported across haemodialysis (HD) trials are numerous, heterogeneous and not always relevant to patients and clinicians. This study aimed to identify critically important vascular access outcomes.
METHOD:
Outcomes derived from a systematic review, multi-disciplinary expert panel and patient input were included in a multilanguage online survey. Participants rated the absolute importance of outcomes using a 9-point Likert scale (7-9 being critically important). The relative importance was determined by a best-worst scale using multinomial logistic regression. Open text responses were analysed thematically.
RESULTS:
The survey was completed by 873 participants [224 (26%) patients/caregivers and 649 (74%) health professionals] from 58 countries. Vascular access function was considered the most important outcome (mean score 7.8 for patients and caregivers/8.5 for health professionals, with 85%/95% rating it critically important, and top ranked on best-worst scale), followed by infection (mean 7.4/8.2, 79%/92% rating it critically important, second rank on best-worst scale). Health professionals rated all outcomes of equal or higher importance than patients/caregivers, except for aneurysms. We identified six themes: necessity for HD, applicability across vascular access types, frequency and severity of debilitation, minimizing the risk of hospitalization and death, optimizing technical competence and adherence to best practice and direct impact on appearance and lifestyle.
CONCLUSIONS:
Vascular access function was the most critically important outcome among patients/caregivers and health professionals. Consistent reporting of this outcome across trials in HD will strengthen their value in supporting vascular access practice and shared decision making in patients requiring HD
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment
Background
Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival.
Methods/design
Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored.
Discussion
This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
Comparative descriptions of eggs from three species of Rhodnius (Hemiptera: Reduviidae: Triatominae)
The authors describe and compare the morphological and ultrastructural characteristics of eggs from the three most recent described species of the genus Rhodnius Stål, 1859, which have not previously been studied. These species are Rhodnius colombiensis (Mejia, Galvão & Jurberg 1999), Rhodnius milesi (Carcavallo, Rocha, Galvão & Jurberg 2001) and Rhodnius stali (Lent, Jurberg & Galvão 1993). The results revealed that there are similarities in the exochorial architecture of optical microscopy and scanning electron microscopy; these include the predominance of hexagonal cells that are common to all Rhodnius species and variable degrees of lateral flattening, which is common not only to species of this genus, but also to the Rhodniini tribe. Differences in overall colour, the presence of a collar in R. milesi, a longitudinal bevel in R. stali and the precise length of R. colombiensis can be useful distinguishing features. As a result of this study, the key for egg identification proposed by Barata in 1981 can be updated.European Community - Chagas Disease Intervention ActivitiesCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES
- …
