4,062 research outputs found
Feeding Stimulates Sphingosine-1-Phosphate Mobilization in Mouse Hypothalamus.
Previous studies have shown that the sphingolipid-derived mediator sphingosine-1-phosphate (S1P) reduces food intake by activating G protein-coupled S1P receptor-1 (S1PR1) in the hypothalamus. Here, we examined whether feeding regulates hypothalamic mobilization of S1P and other sphingolipid-derived messengers. We prepared lipid extracts from the hypothalamus of C57Bl6/J male mice subjected to one of four conditions: free feeding, 12 h fasting, and 1 h or 6 h refeeding. Liquid chromatography/tandem mass spectrometry was used to quantify various sphingolipid species, including sphinganine (SA), sphingosine (SO), and their bioactive derivatives SA-1-phosphate (SA1P) and S1P. In parallel experiments, transcription of S1PR1 (encoded in mice by the S1pr1 gene) and of key genes of sphingolipid metabolism (Sptlc2, Lass1, Sphk1, Sphk2) was measured by RT-PCR. Feeding increased levels of S1P (in pmol-mg-1 of wet tissue) and SA1P. This response was accompanied by parallel changes in SA and dihydroceramide (d18:0/18:0), and was partially (SA1P) or completely (S1P) reversed by fasting. No such effects were observed with other sphingolipid species targeted by our analysis. Feeding also increased transcription of Sptlc2, Lass1, Sphk2, and S1pr1. Feeding stimulates mobilization of endogenous S1PR1 agonists S1P and SA1P in mouse hypothalamus, via a mechanism that involves transcriptional up-regulation of de novo sphingolipid biosynthesis. The results support a role for sphingolipid-mediated signaling in the central control of energy balance
Conditionally-averaged structures in wall-bounded turbulent flows
The quadrant-splitting and the wall-shear detection techniques were used to obtain ensemble-averaged wall layer structures. The two techniques give similar results for Q4 events, but the wall-shear method leads to smearing of Q2 events. Events were found to maintain their identity for very long times. The ensemble-averaged structures scale with outer variables. Turbulence producing events were associated with one dominant vortical structure rather than a pair of counter-rotating structures. An asymmetry-preserving averaging scheme was devised that allowed a picture of the average structure which more closely resembles the instantaneous one, to be obtained
Recommended from our members
Identification of a Widespread Palmitoylethanolamide Contamination in Standard Laboratory Glassware.
Introduction: Fatty acid ethanolamides (FAEs) are a family of lipid mediators that participate in a host of biological functions. Procedures for the quantitative analysis of FAEs include organic solvent extraction from biological matrices (e.g., blood), followed by purification and subsequent quantitation by liquid chromatography-mass spectrometry (LC/MS) or gas chromatography-mass spectrometry. During the validation process of a new method for LC/MS analysis of FAEs in biological samples, we observed unusually high levels of the FAE, palmitoylethanolamide (PEA), in blank samples that did not contain any biological material. Materials and Methods: We investigated a possible source of this PEA artifact via liquid chromatography coupled to tandem mass spectrometry, as well as accurate mass analysis. Results: We found that high levels of a contaminant indistinguishable from PEA is present in new 5.75″ glass Pasteur pipettes, which are routinely used by laboratories to carry out lipid extractions. This artifact might account for discrepancies found in the literature regarding PEA levels in human blood serum and other tissues. Conclusions: It is recommended to take into account this pitfall by analyzing potential contamination of the disposable glassware during the validation process of any method used for analysis of FAEs
Recommended from our members
A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration.
N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) catalyzes the cleavage of membrane NAPEs into bioactive fatty-acid ethanolamides (FAEs). Along with this precursor role, NAPEs might also serve autonomous signaling functions. Here, we report that injections of 6-hydroxydopamine (6-OHDA) into the mouse striatum cause a local increase in NAPE and FAE levels, which precedes neuronal cell death. NAPE, but not FAE, accumulation is enhanced in mice lacking NAPE-PLD, which display a substantial reduction in 6-OHDA-induced neurotoxicity, as shown by increased survival of substantia nigra dopamine neurons, integrity of striatal dopaminergic fibers, and striatal dopamine metabolite content. Reduced damage is accompanied by attenuation of the motor response evoked by apomorphine. Furthermore, NAPE-PLD silencing protects cathecolamine-producing SH-SY5Y cells from 6-OHDA-induced reactive oxygen species formation, caspase-3 activation and death. Mechanistic studies in mice suggest the existence of multiple molecular contributors to the neuroprotective effects of NAPE-PLD deletion, including suppression of Rac1 activity and attenuated transcription of several genes (Cadps, Casp9, Egln1, Kcnj6, Spen, and Uchl1) implicated in dopamine neuron survival and/or Parkinson's disease. The findings point to a previously unrecognized role for NAPE-PLD in the regulation of dopamine neuron function, which may be linked to the control of NAPE homeostasis in membranes
On the large-eddy simulation of transitional wall-bounded flows
The structure of the subgrid scale fields in plane channel flow has been studied at various stages of the transition process to turbulence. The residual stress and subgrid scale dissipation calculated using velocity fields generated by direct numerical simulations of the Navier-Stokes equations are significantly different from their counterparts in turbulent flows. The subgrid scale dissipation changes sign over extended areas of the channel, indicating energy flow from the small scales to the large scales. This reversed energy cascade becomes less pronounced at the later stages of transition. Standard residual stress models of the Smagorinsky type are excessively dissipative. Rescaling the model constant improves the prediction of the total (integrated) subgrid scale dissipation, but not that of the local one. Despite the somewhat excessive dissipation of the rescaled Smagorinsky model, the results of a large eddy simulation of transition on a flat-plate boundary layer compare quite well with those of a direct simulation, and require only a small fraction of the computational effort. The inclusion of non-dissipative models, which could lead to further improvements, is proposed
On local approximations of the pressure-strain term in turbulence models
The results of numerical simulations of turbulent channel flows were used to examine the validity of the local approximation of the pressure-strain term in the Reynolds stress transport equation. Outside of the viscous sublayer the local approximation compares very well with the exact pressure strain. This agreement is due, at least in part, to the high correlation between the rapid pressure and its Laplacian, which suggests that only the near parts of the flow contribute to the rapid pressure at a point. In the viscous sublayer the distance over which the mean shear can be considered constant is comparable to the length scale in the normal direction of the correlations of velocity gradients, leading to failure of the local approximation
Reynolds number effects on particle agglomeration in turbulent channel flow
The work described in this paper employs large eddy simulation and a discrete element method to study particle-laden flows, including particle dispersion and agglomeration, in a horizontal channel. The particle-particle interaction model is based on the Hertz- Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different flow Reynolds numbers, and therefore the impact of turbulence, on particle agglomeration is investigated. The agglomeration rate is found to be strongly influenced by the flow Reynolds number, with most of the particle-particle interactions taking place at locations close to the channel walls, aided by the higher turbulence and concentration of particles in these regions
Recommended from our members
Elevated plasma ceramide levels in post-menopausal women: a cross-sectional study.
Circulating ceramide levels are abnormally elevated in age-dependent pathologies such as cardiovascular diseases, obesity and Alzheimer's disease. Nevertheless, the potential impact of age on plasma ceramide levels has not yet been systematically examined. In the present study, we quantified a focused panel of plasma ceramides and dihydroceramides in a cohort of 164 subjects (84 women) 19 to 80 years of age. After adjusting for potential confounders, multivariable linear regression analysis revealed a positive association between age and ceramide (d18:1/24:0) (β (SE) = 5.67 (2.38); p = .0198) and ceramide (d18:1/24:1) (β (SE) = 2.88 (.61); p < .0001) in women, and between age and ceramide (d18:1/24:1) in men (β (SE) = 1.86 (.77); p = .0179). In women of all ages, but not men, plasma ceramide (d18:1/24:1) was negatively correlated with plasma estradiol (r = -0.294; p = .007). Finally, in vitro experiments in human cancer cells expressing estrogen receptors showed that incubation with estradiol (10 nM, 24 h) significantly decreased ceramide accumulation. Together, the results suggest that aging is associated with an increase in circulating ceramide levels, which in post-menopausal women is at least partially associated with lower estradiol levels
Particle-Interaction Effects in Turbulent Channel Flow
Large eddy simulation and a discrete element method are applied to study the flow, particle dispersion and agglomeration in a horizontal channel. The particle-particle interaction model is based on the Hertz-Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different particle surface energies on agglomeration, and the impact of fluid turbulence, are investigated. The agglomeration rate is found to be strongly influenced by the particle surface energy, with most of the particle-particle interactions taking place at locations close to the channel walls, aided by the higher concentration of particles in these regions
Recommended from our members
Nested Dissection Method on Transputer
Nested dissection method is an elimination method for a set of linear algebraic equations with minimum fillins. Physically it divides a domain into four subdomains, and each subdomain is again divided into four. This procedure is repeated till all nodes are included in some subdomains. Using this characteristic, the authors examine the efficiency of the method on the transputer
- …
