10,683 research outputs found

    Improving Medicaid Managed Care for Youth With Serious Behavioral Health Needs: A Quality Improvement Toolkit

    Get PDF
    Profiles successful initiatives by Medicaid managed care organizations in a collaboration to implement systems of care emphasizing early identification, coordination and management, and various services and supports in the least restrictive settings

    Seed evolution: parental conflicts in a multi-generational household

    Get PDF
    Seeds are multi-generational structures containing a small embryonic plant enclosed in layers of diverse parental origins. The evolution of seeds was a pinnacle in an evolutionary trend towards a progressive retention of embryos and gametes within parental tissue. This strategy, which dates back to the first land plants, allowed an increased protection and nourishing of the developing embryo. Flowering plants took parental control one step further with the evolution of a biparental endosperm that derives from a second parallel fertilization event. The endosperm directly nourishes the developing embryo and allows not only the maternal genes, but also paternal genes, to play an active role during seed development. The appearance of an endosperm set the conditions for the manifestation of conflicts of interest between maternal and paternal genomes over the allocation of resources to the developing embryos. As a consequence, a dynamic balance was established between maternal and paternal gene dosage in the endosperm, and maintaining a correct balance became essential to ensure a correct seed development. This balance was achieved in part by changes in the genetic constitution of the endosperm and through epigenetic mechanisms that allow a differential expression of alleles depending on their parental origin. This review discusses the evolutionary steps that resulted in the appearance of seeds and endosperm, and the epigenetic and genetic mechanisms that allow a harmonious coinhabitance of multiple generations within a single see

    Universal three-body recombination and Efimov resonances in an ultracold Li-Cs mixture

    Full text link
    We study Efimov resonances via three-body loss in an ultracold two-component gas of fermionic 6^6Li and bosonic 133^{133}Cs atoms close to a Feshbach resonance at 843~G, extending results reported previously [Pires \textit{et al.}, Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120~nK. The experimental scheme for reaching lower temperatures is based upon compensating the gravity-induced spatial separation of the mass-imbalanced gases with bichromatic optical dipole traps. We observe the first and second excited Li-Cs-Cs Efimov resonance in the magnetic field dependence of the three-body event rate constant, in good agreement with the universal zero-range theory at finite temperature [Petrov and Werner, Phys. Rev. A 92, 022704 (2015)]. Deviations are found for the Efimov ground state, and the inelasticity parameter η\eta is found to be significantly larger than those for single-species systems

    Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances

    Get PDF
    We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 G and 1000 G. Close to two broad Feshbach resonances we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of the binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave Feshbach resonances we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave Li-Cs Feshbach resonances as compared to our previous work [Pires \textit{et al.}, Phys. Rev. Lett. \textbf{112}, 250404 (2014)]. We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers

    Partnering with Medicaid to Advance and Sustain the Goals of the Child Welfare System

    Get PDF
    The purpose of this paper is to serve as a practical guide for child welfare directors who are looking to expand or sustain services for the children and families that they serve. This paper focuses on ways to partner with Medicaid to leverage opportunities to provide high quality services for children in child welfare who have behavioral health needs. It also includes information that will provide a foundational understanding of the behavioral health needs of children involved with the child welfare system, with an emphasis on describing child behavior through the lens of child development, adaptive functioning, and trauma; the services that can effectively address those behavioral and trauma related responses that can disrupt a child's skills and abilities; and, examples from states and counties who are providing these services and supports

    On the connection of Gamma-rays, Dark Matter and Higgs searches at LHC

    Get PDF
    Motivated by the upcoming Higgs analyzes we investigate the importance of the complementarity of the Higgs boson chase on the low mass WIMP search in direct detection experiments and the gamma-ray emission from the Galactic Center measured by the Fermi-LAT telescope in the context of the SU(3)cSU(3)LU(1)NSU(3)_c\otimes SU(3)_L\otimes U(1)_N. We obtain the relic abundance, thermal cross section, the WIMP-nucleon cross section in the low mass regime and network them with the branching ratios of the Higgs boson in the model. We conclude that the Higgs boson search has a profound connection to the dark matter problem in our model, in particular for the case that (MWIMP<60M_{WIMP} < 60 GeV) the BR(H2H \rightarrow 2 WIMPs) 90\gtrsim 90%. This scenario could explain this plateau of any mild excess regarding the Higgs search as well as explain the gamma-ray emission from the galactic center through the bbˉb\bar{b} channel with a WIMP in the mass range of 25-45 GeV, while still being consistent with the current limits from XENON100 and CDMSII. However, if the recent modest excesses measured at LHC and TEVATRON are confirmed and consistent with a standard model Higgs boson this would imply that MWIMP>60 M_{WIMP} > 60 GeV, consequently ruling out any attempt to explain the Fermi-LAT observations.Comment: 8 pages, 9 figure

    Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors

    Full text link
    We consider a real massless scalar field inside a cavity with two moving mirrors in a two-dimensional spacetime, satisfying Dirichlet boundary condition at the instantaneous position of the boundaries, for arbitrary and relativistic laws of motion. Considering vacuum as the initial field state, we obtain formulas for the exact value of the energy density of the field and the quantum force acting on the boundaries, which extend results found in previous papers. For the particular cases of a cavity with just one moving boundary, non-relativistic velocities, or in the limit of infinity length of the cavity (a single mirror), our results coincide with those found in the literature.Comment: 6 pages 9 figure

    Using ontologies for modeling context-aware services platforms

    Get PDF
    This paper discusses the suitability of using ontologies for modeling context-aware services platforms. It addresses the directions of research we are following in the WASP (Web Architectures for Services Platforms) project. For this purpose a simple scenario is considered
    corecore