10,683 research outputs found
Improving Medicaid Managed Care for Youth With Serious Behavioral Health Needs: A Quality Improvement Toolkit
Profiles successful initiatives by Medicaid managed care organizations in a collaboration to implement systems of care emphasizing early identification, coordination and management, and various services and supports in the least restrictive settings
Seed evolution: parental conflicts in a multi-generational household
Seeds are multi-generational structures containing a small embryonic plant enclosed in layers of diverse parental origins. The evolution of seeds was a pinnacle in an evolutionary trend towards a progressive retention of embryos and gametes within parental tissue. This strategy, which dates back to the first land plants, allowed an increased protection and nourishing of the developing embryo. Flowering plants took parental control one step further with the evolution of a biparental endosperm that derives from a second parallel fertilization event. The endosperm directly nourishes the developing embryo and allows not only the maternal genes, but also paternal genes, to play an active role during seed development. The appearance of an endosperm set the conditions for the manifestation of conflicts of interest between maternal and paternal genomes over the allocation of resources to the developing embryos. As a consequence, a dynamic balance was established between maternal and paternal gene dosage in the endosperm, and maintaining a correct balance became essential to ensure a correct seed development. This balance was achieved in part by changes in the genetic constitution of the endosperm and through epigenetic mechanisms that allow a differential expression of alleles depending on their parental origin. This review discusses the evolutionary steps that resulted in the appearance of seeds and endosperm, and the epigenetic and genetic mechanisms that allow a harmonious coinhabitance of multiple generations within a single see
Universal three-body recombination and Efimov resonances in an ultracold Li-Cs mixture
We study Efimov resonances via three-body loss in an ultracold two-component
gas of fermionic Li and bosonic Cs atoms close to a Feshbach
resonance at 843~G, extending results reported previously [Pires \textit{et
al.}, Phys. Rev. Lett. 112, 250404 (2014)] to temperatures around 120~nK. The
experimental scheme for reaching lower temperatures is based upon compensating
the gravity-induced spatial separation of the mass-imbalanced gases with
bichromatic optical dipole traps. We observe the first and second excited
Li-Cs-Cs Efimov resonance in the magnetic field dependence of the three-body
event rate constant, in good agreement with the universal zero-range theory at
finite temperature [Petrov and Werner, Phys. Rev. A 92, 022704 (2015)].
Deviations are found for the Efimov ground state, and the inelasticity
parameter is found to be significantly larger than those for
single-species systems
Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances
We study the interspecies scattering properties of ultracold Li-Cs mixtures
in their two energetically lowest spin channels in the magnetic field range
between 800 G and 1000 G. Close to two broad Feshbach resonances we create
weakly bound LiCs dimers by radio-frequency association and measure the
dependence of the binding energy on the external magnetic field strength. Based
on the binding energies and complementary atom loss spectroscopy of three other
Li-Cs s-wave Feshbach resonances we construct precise molecular singlet and
triplet electronic ground state potentials using a coupled-channels
calculation. We extract the Li-Cs interspecies scattering length as a function
of the external field and obtain almost a ten-fold improvement in the precision
of the values for the pole positions and widths of the s-wave Li-Cs Feshbach
resonances as compared to our previous work [Pires \textit{et al.}, Phys. Rev.
Lett. \textbf{112}, 250404 (2014)]. We discuss implications on the Efimov
scenario and the universal geometric scaling for LiCsCs trimers
Partnering with Medicaid to Advance and Sustain the Goals of the Child Welfare System
The purpose of this paper is to serve as a practical guide for child welfare directors who are looking to expand or sustain services for the children and families that they serve. This paper focuses on ways to partner with Medicaid to leverage opportunities to provide high quality services for children in child welfare who have behavioral health needs. It also includes information that will provide a foundational understanding of the behavioral health needs of children involved with the child welfare system, with an emphasis on describing child behavior through the lens of child development, adaptive functioning, and trauma; the services that can effectively address those behavioral and trauma related responses that can disrupt a child's skills and abilities; and, examples from states and counties who are providing these services and supports
On the connection of Gamma-rays, Dark Matter and Higgs searches at LHC
Motivated by the upcoming Higgs analyzes we investigate the importance of the
complementarity of the Higgs boson chase on the low mass WIMP search in direct
detection experiments and the gamma-ray emission from the Galactic Center
measured by the Fermi-LAT telescope in the context of the . We obtain the relic abundance, thermal cross section,
the WIMP-nucleon cross section in the low mass regime and network them with the
branching ratios of the Higgs boson in the model. We conclude that the Higgs
boson search has a profound connection to the dark matter problem in our model,
in particular for the case that ( GeV) the BR(
WIMPs) . This scenario could explain this plateau of any mild
excess regarding the Higgs search as well as explain the gamma-ray emission
from the galactic center through the channel with a WIMP in the mass
range of 25-45 GeV, while still being consistent with the current limits from
XENON100 and CDMSII. However, if the recent modest excesses measured at LHC and
TEVATRON are confirmed and consistent with a standard model Higgs boson this
would imply that GeV, consequently ruling out any attempt to
explain the Fermi-LAT observations.Comment: 8 pages, 9 figure
Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors
We consider a real massless scalar field inside a cavity with two moving
mirrors in a two-dimensional spacetime, satisfying Dirichlet boundary condition
at the instantaneous position of the boundaries, for arbitrary and relativistic
laws of motion. Considering vacuum as the initial field state, we obtain
formulas for the exact value of the energy density of the field and the quantum
force acting on the boundaries, which extend results found in previous papers.
For the particular cases of a cavity with just one moving boundary,
non-relativistic velocities, or in the limit of infinity length of the cavity
(a single mirror), our results coincide with those found in the literature.Comment: 6 pages 9 figure
Using ontologies for modeling context-aware services platforms
This paper discusses the suitability of using ontologies for modeling context-aware services platforms. It addresses the directions of research we are following in the WASP (Web Architectures for Services Platforms) project. For this purpose a simple scenario is considered
- …
