168 research outputs found
Memory consolidation in the cerebellar cortex
Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABA(A) agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage
Astrocyte Ca2+-evoked ATP release regulates myelinated axon excitability and conduction speed
INTRODUCTION:
Astrocytes support neuronal function throughout the central nervous system. In the gray matter, they regulate synapse number during development, remove synaptically released neurotransmitters to terminate their action and prevent excitotoxicity, control the extracellular potassium concentration to prevent hyperexcitability, regulate blood flow to ensure an adequate energy supply, provide lactate to neurons for energy, and respond to rises of intracellular calcium concentration ([Ca2+]i) by releasing adenosine triphosphate (ATP) and other gliotransmitters that act on neuronal receptors to modulate information processing. However, their role is unclear in the white matter, which transmits information rapidly between gray matter areas using axons wrapped with capacitance-reducing myelin (although they have been suggested to regulate myelination during development and during normal function).
RATIONALE:
Recently, it has been suggested that learning and memory may reflect not only changes in synaptic function in the gray matter, but also changes in white matter function. In particular, neural circuit function might be regulated by changes in the conduction speed of myelinated axons that result in an altered arrival time of action potentials at a distant neuron. These speed changes might be brought about by alterations of the properties of the passively conducting myelinated internodes or of the intervening excitable nodes of Ranvier, where the action potential is generated. We applied immunohistochemistry to assess how astrocytes interact with myelinated axons, neuronal stimulation and light-evoked calcium uncaging in astrocytes to evoke Ca2+-dependent release of gliotransmitters, and electrophysiology and pharmacology to characterize how astrocyte-released substances might affect the axon initial segment (AIS) and nodes of Ranvier of myelinated neurons. Measurements of conduction velocity and computer modeling allowed us to interpret the results.
RESULTS:
Astrocytes closely approach the axons of myelinated neurons in layer V of the cerebral cortex that enter the corpus callosum. Uncaging Ca2+ within astrocytes or stimulating spike trains in neurons evoked a rise of astrocyte [Ca2+]i that triggered the release of ATP-containing vesicles from these cells. This evoked an inward current in the AIS and nodes of Ranvier of the pyramidal neurons. Pharmacology showed that this was mediated by the activation of Gs-linked adenosine A2a receptors (A2aRs), implying that the released ATP was converted to adenosine by extracellular enzymes. The A2aRs raise the intracellular concentration of cyclic AMP, which activates hyperpolarization-activated cyclic nucleotide–gated (HCN) channels mediating the inward hyperpolarization-activated current (Ih) and thus depolarizes the cell. In the AIS, the activation of A2aRs alters excitability and hence action potential generation, whereas in the nodes of Ranvier, it decreases the conduction speed of the action potential along the axon.
CONCLUSION:
As in the gray matter, astrocyte [Ca2+]i regulates the release of ATP into the extracellular space in the white matter. After conversion to adenosine, this regulates the excitability and conduction speed of myelinated axons. The changes in excitability at the AIS will lead to changes in the relationship between the synaptic input and action potential output of the cell. The altered conduction speed of the myelinated axon may change neural circuit function by changing the action potential arrival time at the cell’s output synapses, thus altering the integration of signals in postsynaptic neurons. Variations in astrocyte-derived adenosine level can occur between wake and sleep states, and the extracellular adenosine concentration rises during energy deprivation conditions. These changes in adenosine level could thus control white matter information flow and neural circuit function
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
Anti-Angiogenic Therapy Induces Integrin-Linked Kinase 1 Up-Regulation in a Mouse Model of Glioblastoma
BACKGROUND: In order to improve our understanding of the molecular pathways that mediate tumor proliferation and angiogenesis, and to evaluate the biological response to anti-angiogenic therapy, we analyzed the changes in the protein profile of glioblastoma in response to treatment with recombinant human Platelet Factor 4-DLR mutated protein (PF4-DLR), an inhibitor of angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: U87-derived experimental glioblastomas were grown in the brain of xenografted nude mice, treated with PF4-DLR, and processed for proteomic analysis. More than fifty proteins were differentially expressed in response to PF4-DLR treatment. Among them, integrin-linked kinase 1 (ILK1) signaling pathway was first down-regulated but then up-regulated after treatment for prolonged period. The activity of PF4-DLR can be increased by simultaneously treating mice orthotopically implanted with glioblastomas, with ILK1-specific siRNA. As ILK1 is related to malignant progression and a poor prognosis in various types of tumors, we measured ILK1 expression in human glioblastomas, astrocytomas and oligodendrogliomas, and found that it varied widely; however, a high level of ILK1 expression was correlated to a poor prognosis. CONCLUSIONS/SIGNIFICANCE: Our results suggest that identifying the molecular pathways induced by anti-angiogenic therapies may help the development of combinatorial treatment strategies that increase the therapeutic efficacy of angiogenesis inhibitors by association with specific agents that disrupt signaling in tumor cells
Volume Regulated Anion Channel Currents of Rat Hippocampal Neurons and Their Contribution to Oxygen-and-Glucose Deprivation Induced Neuronal Death
Volume-regulated anion channels (VRAC) are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM) and NPPB (100 µM), but not to tamoxifen (10 µM). Using oxygen-and-glucose deprivation (OGD) to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD) that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX) and NMDA (40 µM AP-5) receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage
Trastuzumab induced in vivo tissue remodelling associated in vitro with inhibition of the active forms of AKT and PTEN and RhoB induction in an ovarian carcinoma model
Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials
The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code
Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution
Morphological and Pathological Evolution of the Brain Microcirculation in Aging and Alzheimer’s Disease
Key pathological hallmarks of Alzheimer’s disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular “dysfunction” compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD
The Distribution of Toxoplasma gondii Cysts in the Brain of a Mouse with Latent Toxoplasmosis: Implications for the Behavioral Manipulation Hypothesis
reportedly manipulates rodent behavior to enhance the likelihood of transmission to its definitive cat host. The proximate mechanisms underlying this adaptive manipulation remain largely unclear, though a growing body of evidence suggests that the parasite-entrained dysregulation of dopamine metabolism plays a central role. Paradoxically, the distribution of the parasite in the brain has received only scant attention. at six months of age and examined 18 weeks later. The cysts were distributed throughout the brain and selective tropism of the parasite toward a particular functional system was not observed. Importantly, the cysts were not preferentially associated with the dopaminergic system and absent from the hypothalamic defensive system. The striking interindividual differences in the total parasite load and cyst distribution indicate a probabilistic nature of brain infestation. Still, some brain regions were consistently more infected than others. These included the olfactory bulb, the entorhinal, somatosensory, motor and orbital, frontal association and visual cortices, and, importantly, the hippocampus and the amygdala. By contrast, a consistently low incidence of tissue cysts was recorded in the cerebellum, the pontine nuclei, the caudate putamen and virtually all compact masses of myelinated axons. Numerous perivascular and leptomeningeal infiltrations of inflammatory cells were observed, but they were not associated with intracellular cysts. distribution stems from uneven brain colonization during acute infection and explains numerous behavioral abnormalities observed in the chronically infected rodents. Thus, the parasite can effectively change behavioral phenotype of infected hosts despite the absence of well targeted tropism
- …
