48 research outputs found

    Localized reactive angioendotheliomatosis

    No full text

    Die Legionelleninfektion

    No full text

    Direct gyrokinetic comparison of pedestal transport in JET with carbon and ITER-like walls

    No full text
    This paper compares the gyrokinetic instabilities and transport in two representative JET pedestals, one (pulse 78697) from the JET configuration with a carbon wall (C) and another (pulse 92432) from after the installation of JET's ITER-like Wall (ILW). The discharges were selected for a comparison of JET-ILW and JET-C discharges with good confinement at high current (3 MA, corresponding also to low rho(*)) and retain the distinguishing features of JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A comparison of the profiles and heating power reveals a stark qualitative difference between the discharges: the JET-ILW pulse (92432) requires twice the heating power, at a gas rate of 1.9 x 10(22) e s(-1), to sustain roughly half the temperature gradient of the JET-C pulse (78697), operated at zero gas rate. This points to heat transport as a central component of the dynamics limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW pedestal transport paradigm, which is proposed for further examination by both theory and experiment. ILW conditions modify the density pedestal in ways that decrease the normalized pedestal density gradient a/L-n, often via an outward shift in relation to the temperature pedestal. This is attributable to some combination of direct metal wall effects and the need for increased fueling to mitigate tungsten contamination. The modification to the density profile increases eta = L-n/L-T, thereby producing more robust ion temperature gradient (ITG) and electron temperature gradient driven instability. The decreased pedestal gradients for JET-ILW (92432) also result in a strongly reduced E x B shear rate, further enhancing the ion scale turbulence. Collectively, these effects limit the pedestal temperature and demand more heating power to achieve good pedestal performance. Our simulations, consistent with basic theoretical arguments, find higher ITG turbulence, stronger stiffness, and higher pedestal transport in the ILW plasma at lower rho(*)

    Radial variation of heat transport in L-mode JET discharges

    No full text
    In this paper, we analyze heat transport in the JET tokamak using data from its high resolution ECE diagnostic and analyses based on the transfer entropy (TE). The analysis reveals that heat transport is not smooth and continuous, but is characterized by 'trapping regions' separated by `minor transport barriers'. Meat may 'jump over' these barriers and when the heating power is raised, this 'jumping' behavior becomes more prominent. To check that our results are relevant for global heat transport, we deduced an effective diffusion coefficient from the TE results. Both its value and overall radial variation are consistent with heat diffusivities reported in literature. The detailed radial structure of the effective diffusion coefficient was shown to be linked to the mentioned minor transport barriers

    EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field

    No full text
    EDGE2D-EIRENE (the 'code') simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E x B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL E-r was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E. x. B shear can be a player in the L-H transition physics (Delabie et al 2015 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 22-26 June 2015) paper O3.113 (http://ocs.ciemat.es/EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H-D-T) showed that the magnitude of the near SOL E-r is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E x B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, T-e, and SOL E-r. The possibility of a self-feeding mechanism for the increase in the SOL E-r via the interplay between poloidal E x B drift and target T-e is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target T-e and larger E-r, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E x B shear in the SOL is capable of suppressing turbulence

    A power-balance model of the density limit in fusion plasmas: application to the L-mode tokamak

    No full text
    A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald- like scaling, alpha I-p(8/9), for the RFP and the ohmic tokamak, a mixed scaling, alpha (PIp4/9)-I-4/9, for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, arc taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit
    corecore