91 research outputs found

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Focal Cerebral Magnetic Resonance Changes Associated with Partial Status Epilepticus

    Full text link
    We report 2 patients with transient abnormalities on magnetic resonance imaging (MRI) associated with partial status epilepticus (SE). A man with a 4-month history of partial seizures had complex partial SE for 9 days, with left temporal maximum on ictal EEG. Left temporal lobe T 2 signal was increased on MRI during SE, but cerebral MRI was normal 9 weeks later. A woman with “cryptogenic” temporal lobe epilepsy for 16 years had complex partial SE for 1 week, with right temporal maximum on ictal EEG. T 2 Signal was increased over the entire right temporal lobe, extending into the insula, without mass effect, on MRI 1 month after SE ended. Repeat MRI 1 month later showed marked decrease in volume of increased T 2 intensity, without gadolinium enhancement, but with mild mass effect over the right anteroinferomesial temporal areas. A gemistocytic astrocytoma was resected. Focal cerebral MRI abnormalities consistent with cerebral edema may be due to partial SE but also may indicate underlying glioma, even in long-standing partial epilepsy. Focal structural imaging changes consistent with neoplasm should be followed to full resolution after partial SE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65221/1/j.1528-1157.1994.tb02909.x.pd

    Experimental and CFD estimation of heat transfer in helically coiled heat exchangers

    No full text
    Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coiled heat exchanger considering fluid-to-fluid heat transfer, which is the subject of this work. After validating the methodology of CFD analysis of a heat exchanger, the effect of considering the actual fluid properties instead of a constant value is established. Heat transfer characteristics inside a helical coil for various boundary conditions are compared. It is found that the specification of a constant temperature or constant heat flux boundary condition for an actual heat exchanger does not yield proper modelling. Hence, the heat exchanger is analysed considering conjugate heat transfer and temperature dependent properties of heat transport media. An experimental setup is fabricated for the estimation of the heat transfer characteristics. The experimental results are compared with the CFD calculation results using the CFD package FLUENT 6.2. Based on the experimental results a correlation is developed to calculate the inner heat transfer coefficient of the helical coil.© Elsevie

    Thermal hydraulic characteristics of air-water two-phase flows in helical pipes

    No full text
    Helically coiled heat exchangers, where one of the working fluids is flowing through helical coil, are used in various process industries due to better heat transfer characteristics and the resulting compact layout. Out of these, process requirements make some of the heat exchangers to operate in air-water two-phase region. Even though the characteristics of their operation with single-phase working fluids are well documented, it is not so for the case of two-phase flows. There do exist few experimental results on hydrodynamics of air-water flow through helical pipes. However numerical investigation, which can give much insight into the physics of the problem, is lacking and this is the subject matter of this paper. Two-fluid Eulerian-Eulerian scheme available in FLUENT 6.3 is used in this analysis. Pitch circle diameter and pitch of the coil influence the nature of flow through helical coils. Another factor affecting the nature of two-phase flow in helical pipes is the diameter of the pipe. CFD analysis has been carried out by varying these parameters and their influence on thermal hydraulic characteristics of the two-phase flow are brought out. Subsequently analysis has been carried out by changing the inlet void fraction for a given value of the flow velocity. From these analyses, it has been established that correlations for heat transfer and pressure drop shall take into account the pitch circle diameter, pipe diameter and void fraction at the inlet. (C) 2009 The Institution of Chemical Engineers

    CFD analysis of single-phase flows inside helically coiled tubes

    No full text
    It has been well established that heat transfer in a helical coil is higher than that in a corresponding straight pipe However, the detailed characteristics of fluid flow and heat transfer inside helical coil is not available from the present literature This paper brings out clearly the variation of local Nusselt number along the length and circumference at the wall of a helical pipe. Movement of fluid particles in a helical pipe has been traced CFD simulations are carried out for vertically oriented helical coils by varying coil parameters such as (i) pitch circle diameter, (ii) tube pitch and (iii) pipe diameter and their influence on heat transfer has been studied. After establishing influence of these parameters, correlations for prediction of Nusselt number has been developed. A correlation to predict the local values of Nusselt number as a function of angular location of the point is also presented (C) 200

    Not Available

    No full text
    Not AvailablePolycyclic aromatic hydrocarbons (PAHs), including phenanthrene, are commonly found as pollutants in soils, estuarine, and sediments, as well as in terrestrial and other aquatic ecosystems. In this context, the phenanthrene-degrading bacteria were isolated and characterized in contaminated mangrove surface sediment, on the coast of Thane Creek, Mumbai, India by enrichment method, using phenanthrene as the sole source of carbon and energy. The phylogenetic diversity of the isolates were evaluated by 16S rRNA gene analysis and characterized as Bacillus mojavensis strain KSS001, Bacillus firmus strain KSS002, Bacillus flexus strain KSS003, Bacillus vietnamensis strain KSS004, and Bacillus amyloliquefaciens strain KSS005. Each isolate was grown on the phenanthrene up to 100 mg/L and the biodegradation ability was evidenced using a gas chromatography–flame ionization detector. Further, the mean value of phenanthrene degradation by 5 bacterial isolates after incubation in mineral salt medium for 7 days was 63% at 100 mg/L. The study reports that mangrove sediments of Thane Creek, Mumbai, contain a diverse population of phenanthrene-degrading bacteria that have the potential and capability to degrade PAHs contaminated sites, and are consequently recommended for bioremediation.Not Availabl
    corecore