37 research outputs found

    Global Regulation of Nucleotide Biosynthetic Genes by c-Myc

    Get PDF
    The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP) coupled with pair-end ditag sequencing analysis (ChIP-PET) revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated.Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2) on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA) and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis.Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis

    What Lies behind the Wish to Hasten Death? A Systematic Review and Meta-Ethnography from the Perspective of Patients

    Get PDF
    BACKGROUND: There is a need for an in-depth approach to the meaning of the wish to hasten death (WTHD). This study aims to understand the experience of patients with serious or incurable illness who express such a wish. METHODS AND FINDINGS: Systematic review and meta-ethnography of qualitative studies from the patient's perspective. Studies were identified through six databases (ISI, PubMed, PsycINFO, CINAHL, CUIDEN and the Cochrane Register of Controlled Trials), together with citation searches and consultation with experts. Finally, seven studies reporting the experiences of 155 patients were included. The seven-stage Noblit and Hare approach was applied, using reciprocal translation and line-of-argument synthesis. Six main themes emerged giving meaning to the WTHD: WTHD in response to physical/psychological/spiritual suffering, loss of self, fear of dying, the desire to live but not in this way, WTHD as a way of ending suffering, and WTHD as a kind of control over one's life ('having an ace up one's sleeve just in case'). An explanatory model was developed which showed the WTHD to be a reactive phenomenon: a response to multidimensional suffering, rather than only one aspect of the despair that may accompany this suffering. According to this model the factors that lead to the emergence of WTHD are total suffering, loss of self and fear, which together produce an overwhelming emotional distress that generates the WTHD as a way out, i.e. to cease living in this way and to put an end to suffering while maintaining some control over the situation. CONCLUSIONS: The expression of the WTHD in these patients is a response to overwhelming emotional distress and has different meanings, which do not necessarily imply a genuine wish to hasten one's death. These meanings, which have a causal relationship to the phenomenon, should be taken into account when drawing up care plans

    The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases

    Get PDF
    The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers

    Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene: search for autosomal dominant hypocalcemia type 3 (ADH3).

    No full text
    CONTEXT: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. OBJECTIVE: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. DESIGN: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. RESULTS: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. CONCLUSION: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder
    corecore