23 research outputs found
Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies
The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes
Morphogenesis of the T4 tail and tail fibers
Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study
Effect of season, age and sex on E. coli adhesion patterns in Indigenous Ghurrah pigs - a comparative analysis of phenotypic classifications
Monochloramine-sensitive amperometric microelectrode: optimization of gold, platinum, and carbon fiber sensing materials for removal of dissolved oxygen interference
Monochloramine electrochemical determination in an aqueous system using newly fabricated gold and platinum microelectrodes was investigated to optimize sensor operation and to eliminate dissolved oxygen (DO) interference during monochloramine measurements. Carbon fiber microelectrodes were also compared for reference purposes. Gold and platinum microelectrodes exhibited no oxygen interference during monochloramine measurement and provided a linear relationship when operated at +150 and +300 mV vs. Ag/AgCl over a wide concentration range (0–4.2 mg Cl2/L), respectively. The carbon fiber microelectrode with 7-μm tip diameter was not sufficiently sensitive to monochloramine concentrations for detailed study. The baseline signal of both gold and platinum microelectrodes (i.e., signal without monochloramine) was near zero. With the same geometric tip diameter (20-μm tip diameter), gold microelectrodes resulted in better amperometric electrode response to monochloramine than platinum microelectrodes; gold microelectrodes had a higher sensitivity (52 ± 0.7 vs. 18 ± 0.07 pA/[mg Cl2/L]) and lower detection limit (0.12 ± 0.013 vs. 0.33 ± 0.10 mg Cl2/L), resulting in gold as the preferred microelectrode material. The developed gold microelectrode will allow accurate in situ monochloramine determination in biofilm while eliminating the confounding effects of oxygen interference
Contribution of conformational stability of hen lysozyme to induction of type 2 T-helper immune responses
It is important to identify characteristics that confer on proteins the potential to induce allergenic sensitization and allergenic disease. Protein allergens carry T-cell epitopes that are capable of inducing a type 2 T helper (Th2) cell response. There is limited information regarding factors that govern the allergenicity of proteins. We previously reported that a decrease in the conformational stability of hen-egg lysozyme (HEL) enhanced its capacity to activate HEL-specific T cells owing to the increased susceptibility to intracellular antigen processing. To determine whether the conformational stability of HEL makes for a critical contribution to allergenic sensitization in vivo, we immunized BALB/c mice with HEL derivatives of different conformational stability, but which retained a similar three-dimensional structure. The magnitude of in vivo T-cell responses, evaluated by ex vivo proliferative responses of lymph node T cells from mice primed with various HEL derivatives, was inversely correlated with conformational stability, as was interferon-γ (IFN-γ) and interleukin-4 (IL-4) production by splenic T cells in response to HEL. Immunization of the least stable derivative led to a potent IL-4 response and to immunoglobulin E (IgE) antibody production. We propose that the intrinsic allergenicity of proteins can be determined by the degree of conformational stability
