25 research outputs found
The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico
The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean [superscript 206]Pb/[superscript 238]U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean [superscript 206]Pb/[superscript 238]U date of 36.259 ± 0.021 Ma. Weighted mean [superscript 206]Pb/[superscript 238]U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic fluxes for the Organ Needle pluton range from 0.0006 to 0.0030 km3/year, in agreement with estimates from other well-studied plutons. The petrogenetic evolution proposed here may be common to many small-volume silicic volcanic systems
Spatially resolved source apportionment of per- and polyfluoroalkyl substances (PFAS) within a post-industrial river catchment
Source apportionment of per- and polyfluoroalkyl substances (PFAS) in rivers is typically based on water concentrations, which cannot quantify PFAS loads or define geographical source areas. This study applied a river catchment-scale approach to identify PFAS source zones and assess the relative importance of industrial PFAS sources in the River Mersey, UK - a post-industrial, densely populated catchment with diverse PFAS sources. Synoptic sampling and PFAS river load analysis identified key sub-catchments and river stretches contributing the majority of PFAS. Notably, the highest PFAS concentrations did not always correspond to the greatest loads. Most PFOS (64 %), PFOA (49 %), 6:2FTS (46 %) and PFHxS (56 %) were exported from the Upper Mersey sub-catchment, despite higher concentrations in northern sub-catchments, emphasising the importance of load-based monitoring. Mass balance analysis of loads highlighted substantial inputs from specific river stretches, notably the Lower Irwell (Bolton to Manchester City Centre), River Tame (Marple Bridge to Stockport), and Upper Mersey (Stockport to Urmston). While PFAS loads generally scaled with catchment area, yield (load per unit area) analysis identified disproportionately high exports from small headwater catchments, notably the upper River Roch (PFOA, PFHpA and PFHxA) and Glaze Brook (PFBS). Industrial sources in these sub-catchments (a waste management facility and landfills, respectively) were confirmed using gadolinium anomaly analysis and consented discharge records. More widely, gadolinium data suggested industrial discharges may contribute to PFAS occurrence at 62 % of our sample sites throughout the catchment. These findings demonstrate that spatial analysis of PFAS loads, rather than concentrations alone, is critical for identifying PFAS source areas. We present a scalable monitoring framework for PFAS source apportionment applied at the river catchment-scale that can be used by environmental managers to target and prioritise PFAS source areas for detailed monitoring and remediation
The study of rare earth elements in farmer's well waters of the Podwiśniówka acid mine drainage area (south-central Poland)
Deducing the source and composition of rare earth mineralising fluids in carbonatites: insights from isotopic (C, O, 87Sr/86Sr) data from Kangankunde, Malawi
This is the final version of the article. Available from Springer Verlag via the DOI in this record.Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C − 3.5 to − 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C −5.2 to −6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.This project was funded by the UK Natural Environment Research Council (NERC) SoS RARE project (NE/M011429/1) and by NIGL (NERC Isotope Geoscience Laboratory) Project number 20135
The Rare Earth Elements: demand, global resources, and challenges for resourcing future generations
The rare earth elements (REE) have attracted much attention in recent years, being viewed as critical metals because of China’s domination of their supply chain. This is despite the fact that REE enrichments are known to exist in a wide range of settings, and have been the subject of much recent exploration. Although the REE are often referred to as a single group, in practice each individual element has a specific set of end-uses, and so demand varies between them. Future demand growth to 2026 is likely to be mainly linked to the use of NdFeB magnets, particularly in hybrid and electric vehicles and wind turbines, and in erbium-doped glass fiber for communications. Supply of lanthanum and cerium is forecast to exceed demand. There are several different types of natural (primary) REE resources, including those formed by high-temperature geological processes (carbonatites, alkaline rocks, vein and skarn deposits) and those formed by low-temperature processes (placers, laterites, bauxites and ion-adsorption clays). In this paper, we consider the balance of the individual REE in each deposit type and how that matches demand, and look at some of the issues associated with developing these deposits. This assessment and overview indicate that while each type of REE deposit has different advantages and disadvantages, light rare earth-enriched ion adsorption types appear to have the best match to future REE needs. Production of REE as by-products from, for example, bauxite or phosphate, is potentially the most rapid way to produce additional REE. There are still significant technical and economic challenges to be overcome to create substantial REE supply chains outside China
Arsenic contamination of natural waters in San Juan and La Pampa, Argentina
Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MAV) and dimethylarsinic acid (DMAV). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l−1 As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l−1 As. The pH range for the provinces of San Juan (7.2–9.7) and La Pampa (7.0–9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm−1) and TDS (>1,400 mg l−1). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216–224 μg l−1 As to 0.3–0.8 μg l−1 As. Arsenic species for both provinces were predominantly AsIII and AsV. AsIII and AsV concentrations in San Juan ranged from 4–138 μg l−1 to <0.02–22 μg l−1 for surface waters (in the San José de Jáchal region) and 23–346 μg l−1 and 0.04–76 μg l−1 for groundwater, respectively. This translates to a relative AsIII abundance of 69–100% of the total arsenic in surface waters and 32–100% in groundwater. This is unexpected because it is typically thought that in oxidising conditions (surface waters), the dominant arsenic species is AsV. However, data from the SPE methodology suggests that AsIII is the prevalent species in San Juan, indicating a greater influence from reductive processes. La Pampa groundwater had AsIII and AsV concentrations of 5–1,332 μg l−1 and 0.09–592 μg l−1 for EC and 32–242 μg l−1 and 30–277 μg l−1 As for LU, respectively. Detectable levels of MAV were reported in both provinces up to a concentration of 79 μg l−1 (equating to up to 33% of the total arsenic). Previously published literature has focused primarily on the inorganic arsenic species, however this study highlights the potentially significant concentrations of organoarsenicals present in natural waters. The potential for separating and preserving individual arsenic species in the field to avoid transformation during transport to the laboratory, enabling an accurate assessment of in situ arsenic speciation in water supplies is discussed
The truth is in the stream: Use of tracer techniques and synoptic sampling to evaluate metal loading and remedial options in a hydrologically complex setting
Two synoptic sampling campaigns were conducted to quantify metal loading to Illinois Gulch, a small stream affected by historical mining activities. The first campaign was designed to determine the degree to which Illinois Gulch loses water to the underlying mine workings and to determine the effect of these losses on observed metal loads. The second campaign was designed to evaluate metal loading within Iron Springs, a subwatershed that was responsible for the majority of the metal loading observed during the first campaign. A continuous, constant-rate injection of a conservative tracer was initiated prior to both sampling campaigns and maintained throughout the duration of each study. Tracer concentrations were subsequently used to determine streamflow in gaining stream reaches using the tracer-dilution method, and as an indicator of hydrologic connections between Illinois Gulch and subsurface mine workings. Streamflow losses to the mine workings were quantified during the first campaign using a series of slug additions in which specific conductivity readings were used as a surrogate for tracer concentration. Data from the continuous injections and slug additions were combined to develop spatial streamflow profiles along each study reach. Streamflow estimates were multiplied by observed metal concentrations to yield spatial profiles of metal load that were in turn used to quantify and rank metal sources. Study results indicate that Illinois Gulch loses water to subsurface mine workings and that remedial measures that reduce flow loss (e.g. channel lining) could lessen metal loading from the Iron Springs area. The primary sources of metals to Illinois Gulch include diffuse springs and groundwater, and a draining mine adit. Diffuse sources were determined to have a much larger effect on water quality than other sources that had been the subject of previous investigations due to their visual appearance, supporting the idea that “the truth is in the stream.” The overall approach of combining spatially intensive sampling with a rigorous hydrological characterization is applicable to non-mining constituents such as nutrients and pesticides
The ~1.85 Ga carbonatite in north China and its implications on the evolution of the Columbia supercontinent
Mantle-derived carbonatites provide a unique window in the understanding of mantle characteristics and dynamics, as well as insight into the assembly and breakup of supercontinents. As a petrological indicator of extensional tectonic regimes, Archean/Proterozoic carbonatites provide important constraints on the timing of the breakup of ancient supercontinents. The majority of the carbonatites reported worldwide are Phanerozoic, in part because of the difficulty in recognizing Archean/Proterozoic carbonatites, which are characterized by strong foliation and recrystallization, and share broad petrologic similarities with metamorphosed sedimentary lithologies. Here, we report the recognition of a ∼1.85 Ga carbonatite in Chaihulanzi area of Chifeng in north China based on systematic geological, petrological, geochemical, and baddeleyite U-Pb geochronological results. The carbonatite occurs as dikes or sills emplaced in Archean metasedimentary rocks and underwent intense deformation. Petrological and SEM/EDS results show that calcite and dolomite are the dominant carbonate minerals along with minor and varied amounts of Mg-rich mafic minerals, including forsterite (with Fo N 98), phlogopite, diopside, and an accessory amount of apatite, baddeleyite, spinel, monazite, and ilmenite. The relatively high silica content together with the non-arc and OIB-like trace element signatures of the carbonatite indicates a hot mantle plume as the likely magma source. The depleted Nd isotopic signatures suggest that plume upwelling might be triggered by the accumulation of recycled crust in the deep mantle. As a part of the global-scale Columbia supercontinent, the Proterozoic tectonic evolution of the North China Craton (NCC) provides important insights into the geodynamics governing amalgamation and fragmentation of the supercontinent. The Paleo-Mesoproterozoic boundary is the key point of tectonic transition from compressional to extensional settings in the NCC. The newly identified ∼1.85 Ga carbonatite provides a direct link between the long-lasting supercontinental breakup and plume activity, which might be sourced from the "slab graveyard," continental crustal slabs subducted into asthenosphere, beneath the supercontinent. The carbonatite provides a precise constraint of the initiation of the continental breakup at ∼1.85 Ga
