8,569 research outputs found
Hydrostatic pressure induced Dirac semimetal in black phosphorus
Motivated by recent experimental observation of an hydrostatic pressure
induced transition from semiconductor to semimetal in black phosphorus [Chen et
al. in arXiv:1504.00125], we present the first principles calculation on the
pressure effect of the electronic structures of black phosphorus. It is found
that the band crossover and reversal at the Z point occur around the critical
pressure Pc1=1.23 Gpa, and the band inversion evolves into 4 twofold-degenerate
Dirac cones around the Z point, suggesting a 3D Dirac semimetal. With further
increasing pressure the Dirac cones in the Gamma-Z line move toward the Gamma
point and evolve into two hole-type Fermi pockets, and those in the Z-M lines
move toward the M point and evolve into 2 hole-type Fermi pockets up to P=4.0
Gpa. It demonstrates clearly that the Lifshitz transition occurs at
from semiconductor to 3D Dirac semimetal protected by the nonsymmorphic space
symmetry of bulk. This suggests the bright perspective of black phosphorus for
optoelectronic and electronic devices due to its easy modulation by pressure.Comment: 7 pages, 9 figures, and 2 table
Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary
To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).
Service Orientation and the Smart Grid state and trends
The energy market is undergoing major changes, the most notable of which is the transition from a hierarchical closed system toward a more open one highly based on a “smart” information-rich infrastructure. This transition calls for new information and communication technologies infrastructures and standards to support it. In this paper, we review the current state of affairs and the actual technologies with respect to such transition. Additionally, we highlight the contact points between the needs of the future grid and the advantages brought by service-oriented architectures.
On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation
In the framework of toroidal Pseudodifferential operators on the flat torus
we begin by proving the closure under
composition for the class of Weyl operators with
simbols . Subsequently, we
consider when where and we exhibit the toroidal version of the
equation for the Wigner transform of the solution of the Schr\"odinger
equation. Moreover, we prove the convergence (in a weak sense) of the Wigner
transform of the solution of the Schr\"odinger equation to the solution of the
Liouville equation on written in the measure sense.
These results are applied to the study of some WKB type wave functions in the
Sobolev space with phase functions in the class
of Lipschitz continuous weak KAM solutions (of positive and negative type) of
the Hamilton-Jacobi equation for with , and to the study of the
backward and forward time propagation of the related Wigner measures supported
on the graph of
Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes
Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography
BLM and RMI1 alleviate RPA inhibition of topoIIIα decatenase activity
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA
Performance of the VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid bacterial identification in two diagnostic centres in China
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS systems was not officially launched for diagnostic use in clinical microbiology laboratories in China until 2012. Here, we report the findings from the first large-scale evaluation study of VITEK MS for routine bacterial identification in two major diagnostic centres in Beijing and Hong Kong. A total of 2266 unique isolates representing 56 genera and 127 species were analysed, and results were compared to those obtained by VITEK 2. Any discrepancies were resolved by 16S rRNA sequencing. Overall, VITEK MS provided correct identification for 2246 (99.1%) isolates, including 2193 (96.8%) with correct species-level identifications and 53 (2.3%) matched at the genus level only. VITEK MS surpassed VITEK 2 consistently in species-level identification of important pathogens, including non-Enterobacteriaceae Gram-negative bacilli (94.7 versus 92%), staphylococci (99.7 versus 92.4%), streptococci (92.6 versus 79.4%), enterococci (98.8 versus 92.6%) and Clostridium spp. (97.3 versus 55.5%). The findings demonstrated that VITEK MS is highly accurate and reliable for routine bacterial identification in clinical settings in China. © 2015 The Authors.postprin
Hmong Adults Self-Rated Oral Health: A Pilot Study
Since 1975, the Hmong refugee population in the U.S. has increased over 200%. However, little is known about their dental needs or self-rated oral health (SROH). The study aims were to: (1) describe the SROH, self-rated general health (SRGH), and use of dental/physician services; and (2) identify the factors associated with SROH among Hmong adults. A cross-sectional study design with locating sampling methodology was used. Oral health questionnaire was administered to assess SROH and SRGH, past dental and physician visits, and language preference. One hundred twenty adults aged 18–50+ were recruited and 118 had useable information. Of these, 49% rated their oral health as poor/fair and 30% rated their general health as poor/fair. Thirty-nine percent reported that they did not have a regular source of dental care, 46% rated their access to dental care as poor/fair, 43% visited a dentist and 66% visited a physician within the past 12 months. Bivariate analyses demonstrated that access to dental care, past dental visits, age and SRGH were significantly associated with SROH (P \u3c 0.05). Multivariate analyses demonstrated a strong association between access to dental care and good/excellent SROH. About half of Hmong adults rated their oral health and access to dental care as poor. Dental insurance, access to dental care, past preventive dental/physician visits and SRGH were associated with SROH
The Shapes of Cooperatively Rearranging Regions in Glass Forming Liquids
The shapes of cooperatively rearranging regions in glassy liquids change from
being compact at low temperatures to fractal or ``stringy'' as the dynamical
crossover temperature from activated to collisional transport is approached
from below. We present a quantitative microscopic treatment of this change of
morphology within the framework of the random first order transition theory of
glasses. We predict a correlation of the ratio of the dynamical crossover
temperature to the laboratory glass transition temperature, and the heat
capacity discontinuity at the glass transition, Delta C_p. The predicted
correlation agrees with experimental results for the 21 materials compiled by
Novikov and Sokolov.Comment: 9 pages, 6 figure
- …
