3,717 research outputs found
Perturbation analysis of a matrix differential equation
Two complex matrix pairs and are contragrediently
equivalent if there are nonsingular and such that
. M.I. Garc\'{\i}a-Planas and V.V. Sergeichuk
(1999) constructed a miniversal deformation of a canonical pair for
contragredient equivalence; that is, a simple normal form to which all matrix
pairs close to can be reduced by
contragredient equivalence transformations that smoothly depend on the entries
of and . Each perturbation of defines the first order induced perturbation
of the matrix , which is the first order
summand in the product . We find all
canonical matrix pairs , for which the first order induced perturbations
are nonzero for all nonzero perturbations in
the normal form of Garc\'{\i}a-Planas and Sergeichuk. This problem arises in
the theory of matrix differential equations , whose product of two
matrices: ; using the substitution , one can reduce by
similarity transformations and by contragredient equivalence
transformations
El Projecte Atles Multimèdia de Prosòdia de l'Espai Romànic (AMPER) i les III Jornadas científicas del proyecto AMPER (24-25 d'octubre de 2006)
Prieto, Pilar / Cabré, Teresa (coord) (2013): L'entonació dels dialectes catalans. Barcelona: Publicacions de l'Abadia de Montserrat, 239 p.
III Congreso de Fonética Experimental (Santiago de Compostela, del 24 al 26 de octubre de 2005)
El Projecte Atles Multimèdia de Prosòdia de l'Espai Romànic (AMPER) i les III Jornadas científicas del proyecto AMPER (24-25 d'octubre de 2006)
- …
