164,147 research outputs found
The impact of financial inclusion interventions on the economy of Kirklees - final technical report
A review of research into the development of radiologic expertise: Implications for computer-based training
Rationale and Objectives. Studies of radiologic error reveal high levels of variation between radiologists. Although it is known that experts outperform novices, we have only limited knowledge about radiologic expertise and how it is acquired.Materials and Methods. This review identifies three areas of research: studies of the impact of experience and related factors on the accuracy of decision-making; studies of the organization of expert knowledge; and studies of radiologists' perceptual processes.Results and Conclusion. Interpreting evidence from these three paradigms in the light of recent research into perceptual learning and studies of the visual pathway has a number of conclusions for the training of radiologists, particularly for the design of computer-based learning programs that are able to illustrate the similarities and differences between diagnoses, to give access to large numbers of cases and to help identify weaknesses in the way trainees build up a global representation from fixated regions
Enhancement of platelet response to immune complexes and IgG aggregates by lipid A-rich bacterial lipopolysaccharides.
The effect of the common lipid moiety of bacterial LPS on secretion from washed human platelets has been studied. The lipid A-rich LPS of S. minnesota R595 and a lipid A preparation both potentiated platelet serotonin secretion in response to IgG aggregates or immune complexes up to 50-fold but had little effect in the absence of IgG. Lipid A has been shown to bind immune aggregates, raising the possibility that its mechanism of action involved effective enlargement or insolubilization of the aggregates. IgG aggregates of dimer to tetramer size were shown to be platelet simuli, equivalent on a weight basis to larger soluble aggregates. The effect of both sizes of aggregates on platelets were equally enhanced by the LPS, indicating that increased size of aggregates alone could not account for the effect of LPS. Similarly, because lipid A-rich LPS enhanced platelet response to already insoluble immune complexes, its mechanism of action cannot simply be insolubilization of immune aggregates. These LPS did not enhance platelet stimulation by antiplatelet antibody, monosodium urate crystals, or thrombin and only slightly enhanced stimulation by insoluble human skin collagen. This indicates some stimulus specificity in the ability of LPS to increase platelet secretion. The enhancement of cell response to immune complexes by the common lipid region of LPS may represent a mechanism for the diverse effects of LPS in vivo and in vitro
Evolution: Complexity, uncertainty and innovation
Complexity science provides a general mathematical basis for evolutionary thinking. It makes us face the inherent, irreducible nature of uncertainty and the limits to knowledge and prediction. Complex, evolutionary systems work on the basis of on-going, continuous internal processes of exploration, experimentation and innovation at their underlying levels. This is acted upon by the level above, leading to a selection process on the lower levels and a probing of the stability of the level above. This could either be an organizational level above, or the potential market place. Models aimed at predicting system behaviour therefore consist of assumptions of constraints on the micro-level – and because of inertia or conformity may be approximately true for some unspecified time. However, systems without strong mechanisms of repression and conformity will evolve, innovate and change, creating new emergent structures, capabilities and characteristics. Systems with no individual freedom at their lower levels will have predictable behaviour in the short term – but will not survive in the long term. Creative, innovative, evolving systems, on the other hand, will more probably survive over longer times, but will not have predictable characteristics or behaviour. These minimal mechanisms are all that are required to explain (though not predict) the co-evolutionary processes occurring in markets, organizations, and indeed in emergent, evolutionary communities of practice. Some examples will be presented briefly
Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide. Distinction between K/H exchange and KCl cotransport.
Exposure of Amphiuma red blood cells to millimolar concentrations of N-ethylmaleimide (NEM) resulted in net K loss. In order to determine whether net K loss was conductive or was by electroneutral K/H exchange or KCl cotransport, studies were performed evaluating K flux in terms of the thermodynamic forces to which K flux by the above pathways should couple. The direction and magnitude of the NEM-induced net K flux did not correspond with the direction and magnitude of the forces relevant to K conductance or electroneutral KCl cotransport. Both the magnitude and direction of the NEM-activated K flux responded to the driving force for K/H exchange. We therefore conclude that NEM-induced K loss, like that by osmotically swollen Amphiuma red blood cells, is by an electroneutral K/H exchanger. In addition to the above studies, we evaluated the kinetic behavior of the volume- and NEM-induced K/H exchange flux pathways in media where Cl was replaced by SCN, NO3, para-aminohippurate (PAH), or gluconate. The anion replacement studies did not permit a distinction between K/H exchange and KCl cotransport, since, depending upon the anion used as a Cl replacement, partial inhibition or stimulation of volume-activated K/H exchange fluxes was observed. In contrast, all anions used were stimulatory to the NEM-induced K loss. Since, on the basis of force-flow analysis, both volume-and NEM-induced K loss are K/H exchange, it was necessary to reevaluate assumptions (i.e., anions serve as substrates and therefore probe the translocation step) associated with the use of anion replacement as a means of flux route identification. When viewed together with the force-flow studies, the Cl replacement studies suggest that anion effects upon K/H exchange are indirect. The different anions appear to alter mechanisms that couple NEM exposure and cell swelling to the activation of K/H exchange, as opposed to exerting direct effects upon K and H translocation
Research into financial exclusion in Rochdale - final technical report
This report presents the findings and recommendations of research conducted on the extent and nature of financial exclusion in Rochdale
pH regulatory Na/H exchange by Amphiuma red blood cells.
In Amphiuma red blood cells, the Na/H exchanger has been shown to play a central role in the regulation of cell volume following cell shrinkage (Cala, P. M. 1980. Journal of General Physiology. 76:683-708.) The present study was designed to evaluate the existence of pH regulatory Na/H exchange in the Amphiuma red blood cell. The data illustrate that when the intracellular pHi was decreased below the normal value of 7.00, Na/H exchange was activated in proportion to the degree of acidification. Once activated, net Na/H exchange flux persisted until normal intracellular pH (6.9-7.0) was restored, with a half time of approximately 5 min. These observations established a pHi set point of 7.00 for the pH-activated Na/H exchange of Amphiuma red blood cell. This is in contrast to the behavior of osmotically shrunken Amphiuma red blood cells in which no pHi set point could be demonstrated. That is, when activated by cell shrinkage the Na/H exchange mediated net Na flux persisted until normal volume was restored regardless of pHi. In contrast, when activated by cell acidification, the Na/H exchanger functioned until pHi was restored to normal and cell volume appeared to have no effect on pH-activated Na/H exchange. Studies evaluating the kinetic and inferentially, the molecular equivalence of the volume and pHi-induced Amphiuma erythrocyte Na/H exchanger(s), indicated that the apparent Na affinity of the pH activated cells is four times greater than that of shrunken cells. The apparent Vmax is also higher (two times) in the pH activated cells, suggesting the involvement of two distinct populations of the transporter in pH and volume regulation. However, when analyzed in terms of a bisubstrate model, the same data are consistent with the conclusion that both pH and volume regulatory functions are mediated by the same transport protein. Taken together, these data support the conclusion that volume and pH are regulated by the same effector (Na/H exchanger) under the control of as yet unidentified, distinct and cross inhibitory volume and pH sensing mechanisms
Recommended from our members
Physiological monitoring in the complex multi-morbid heart failure patient - Introduction.
Repeated physiological monitoring of comorbidities in heart failure (HF) is pivotal. This document introduces the main challenges related to physiological monitoring in the complex multimorbid HF patient, arising during an ESC consensus meeting on this topic
- …
