3,007 research outputs found

    Jet quenching in shock waves

    Full text link
    We study the propagation of an ultrarelativistic light quark jet inside a shock wave using the holographic principle. The maximum stopping distance and its dependency on the energy of the jet is obtained

    Energy loss in a strongly coupled anisotropic plasma

    Full text link
    We study the energy loss of a rotating infinitely massive quark moving, at constant velocity, through an anisotropic strongly-coupled N=4 plasma from holography. It is shown that, similar to the isotropic plasma, the energy loss of the rotating quark is due to either the drag force or radiation with a continuous crossover from drag-dominated regime to the radiation dominated regime. We find that the anisotropy has a significant effect on the energy loss of the heavy quark, specially in the crossover regime. We argue that the energy loss due to radiation in anisotropic media is less than the isotropic case. Interestingly this is similar to analogous calculations for the energy loss in weakly coupled anisotropic plasma.Comment: 26+1 pages, 10 figures, typos fixe

    Inductively guided circuits for ultracold dressed atoms

    Get PDF
    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    Three-loop HTL QCD thermodynamics

    Get PDF
    The hard-thermal-loop perturbation theory (HTLpt) framework is used to calculate the thermodynamic functions of a quark-gluon plasma to three-loop order. This is the highest order accessible by finite temperature perturbation theory applied to a non-Abelian gauge theory before the high-temperature infrared catastrophe. All ultraviolet divergences are eliminated by renormalization of the vacuum, the HTL mass parameters, and the strong coupling constant. After choosing a prescription for the mass parameters, the three-loop results for the pressure and trace anomaly are found to be in very good agreement with recent lattice data down to T23TcT \sim 2-3\,T_c, which are temperatures accessible by current and forthcoming heavy-ion collision experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE

    MRI of the lung (1/3):methods

    Get PDF
    Proton magnetic resonance imaging (MRI) has recently emerged as a clinical tool to image the lungs. This paper outlines the current technical aspects of MRI pulse sequences, radiofrequency (RF) coils and MRI system requirements needed for imaging the pulmonary parenchyma and vasculature. Lung MRI techniques are presented as a “technical toolkit”, from which MR protocols will be composed in the subsequent papers for comprehensive imaging of lung disease and function (parts 2 and 3). This paper is pitched at MR scientists, technicians and radiologists who are interested in understanding and establishing lung MRI methods. Images from a 1.5 T scanner are used for illustration of the sequences and methods that are highlighted. Main Messages • Outline of the hardware and pulse sequence requirements for proton lung MRI • Overview of pulse sequences for lung parenchyma, vascular and functional imaging with protons • Demonstration of the pulse-sequence building blocks for clinical lung MRI protocol

    The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews

    Get PDF
    Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases

    Early-Time Energy Loss in a Strongly-Coupled SYM Plasma

    Full text link
    We carry out an analytic study of the early-time motion of a quark in a strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence. Our approach extracts the first thermal effects as a small perturbation of the known quark dynamics in vacuum, using a double expansion that is valid for early times and for (moderately) ultrarelativistic quark velocities. The quark is found to lose energy at a rate that differs significantly from the previously derived stationary/late-time result: it scales like T^4 instead of T^2, and is associated with a friction coefficient that is not independent of the quark momentum. Under conditions representative of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a few times smaller than its late-time counterpart. Our analysis additionally leads to thermally-corrected expressions for the intrinsic energy and momentum of the quark, in which the previously discovered limiting velocity of the quark is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications. References added. Version to be published in JHE

    The Echinococcus canadensis (G7) genome: A key knowledge of parasitic platyhelminth human diseases

    Get PDF
    Background: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. Results: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. Conclusions: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.Fil: Maldonado, Lucas Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Assis, Juliana. Fundación Oswaldo Cruz; BrasilFil: Gomes Araújo, Flávio M.. Fundación Oswaldo Cruz; BrasilFil: Salim, Anna C. M.. Fundación Oswaldo Cruz; BrasilFil: Macchiaroli, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cucher, Marcela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Camicia, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fox, Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Oliveira, Guilherme. Instituto Tecnológico Vale; Brasil. Fundación Oswaldo Cruz; BrasilFil: Kamenetzky, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Probing strongly coupled anisotropic plasma

    Full text link
    We calculate the static potential, the drag force and the jet quenching parameter in strongly coupled anisotropic N=4 super Yang-Mills plasma. We find that the jet quenching is in general enhanced in presence of anisotropy compared to the isotropic case and that its value depends strongly on the direction of the moving quark and the direction along which the momentum broadening occurs. The jet quenching is strongly enhanced for a quark moving along the anisotropic direction and momentum broadening happens along the transverse one. The parameter gets lower for a quark moving along the transverse direction and the momentum broadening considered along the anisotropic one. Finally, a weaker enhancement is observed when the quark moves in the transverse plane and the broadening occurs on the same plane. The drag force for quark motion parallel to the anisotropy is always enhanced. For motion in the transverse space the drag force is enhanced compared to the isotropic case only for quarks having velocity above a critical value. Below this critical value the force is decreased. Moreover, the drag force along the anisotropic direction is always stronger than the force in the transverse space. The diffusion time follows exactly the inverse relations of the drag forces. The static potential is decreased and stronger decrease observed for quark-antiquark pair aligned along the anisotropic direction than the transverse one. We finally comment on our results and elaborate on their similarities and differences with the weakly coupled plasmas.Comment: 1+44 pages, 18 Figures; Added results on static force; Added references; version published in JHE
    corecore