44 research outputs found
Infusion fluids contain harmful glucose degradation products
PURPOSE: Glucose degradation products (GDPs) are precursors of advanced glycation end products (AGEs) that cause cellular damage and inflammation. We examined the content of GDPs in commercially available glucose-containing infusion fluids and investigated whether GDPs are found in patients' blood. METHODS: The content of GDPs was examined in infusion fluids by high-performance liquid chromatography (HPLC) analysis. To investigate whether GDPs also are found in patients, we included 11 patients who received glucose fluids (standard group) during and after their surgery and 11 control patients receiving buffered saline (control group). Blood samples were analyzed for GDP content and carboxymethyllysine (CML), as a measure of AGE formation. The influence of heat-sterilized fluids on cell viability and cell function upon infection was investigated. RESULTS: All investigated fluids contained high concentrations of GDPs, such as 3-deoxyglucosone (3-DG). Serum concentration of 3-DG increased rapidly by a factor of eight in patients receiving standard therapy. Serum CML levels increased significantly and showed linear correlation with the amount of infused 3-DG. There was no increase in serum 3-DG or CML concentrations in the control group. The concentration of GDPs in most of the tested fluids damaged neutrophils, reducing their cytokine secretion, and inhibited microbial killing. CONCLUSIONS: These findings indicate that normal standard fluid therapy involves unwanted infusion of GDPs. Reduction of the content of GDPs in commonly used infusion fluids may improve cell function, and possibly also organ function, in intensive-care patients
Insulin-Like Growth Factors Promote Vasculogenesis in Embryonic Stem Cells
The ability of embryonic stem cells to differentiate into endothelium and form functional blood vessels has been well established and can potentially be harnessed for therapeutic angiogenesis. However, after almost two decades of investigation in this field, limited knowledge exists for directing endothelial differentiation. A better understanding of the cellular mechanisms regulating vasculogenesis is required for the development of embryonic stem cell-based models and therapies. In this study, we elucidated the mechanistic role of insulin-like growth factors (IGF1 and 2) and IGF receptors (IGFR1 and 2) in endothelial differentiation using an embryonic stem cell embryoid body model. Both IGF1 or IGF2 predisposed embryonic stem to differentiate towards a mesodermal lineage, the endothelial precursor germ layer, as well as increased the generation of significantly more endothelial cells at later stages. Inhibition of IGFR1 signaling using neutralizing antibody or a pharmacological inhibitor, picropodophyllin, significantly reduced IGF-induced mesoderm and endothelial precursor cell formation. We confirmed that IGF-IGFR1 signaling stabilizes HIF1α and leads to up-regulation of VEGF during vasculogenesis in embryoid bodies. Understanding the mechanisms that are critical for vasculogenesis in various models will bring us one step closer to enabling cell based therapies for neovascularization
An underlying principle for the study of circulating progenitor cells in diabetes and its complications
Levels of three distinct p75 neurotrophin receptor forms found in human plasma are altered in type 2 diabetic patients.
AIMS/HYPOTHESIS: The p75 neurotrophin receptor (p75NTR) has been shown to appear in the plasma of diabetic rats, possibly indicating diabetic neuropathy. The aim of this study was to use a semi-quantitative assay for human plasma p75NTR to investigate whether this receptor is a marker of peripheral diabetic neuropathy (DPN) and autonomic cardiovascular neuropathy (CAN) in type 2 diabetic patients. SUBJECTS AND METHODS: Eighty type 2 diabetic patients and 25 controls without diabetes were analysed for p75NTR immunoreactivity by western blot analysis. DPN was assessed using the Neuropathy Disability Score (NDS). Cardiovascular autonomic function was detected using a standardised analysis of heart rate variability. RESULTS: Three distinct p75NTR signals were detectable in human plasma at approximately 75, approximately 51 and approximately 24 kDa, representing the full length receptor (FL) and its intracellular domain (ICD) and extracellular domain (ECD), respectively. Levels of total plasma p75NTR immunoreactivity in patients with type 2 diabetes were similar to those in controls. Type 2 diabetic patients had significantly higher plasma levels of ICD and lower levels of ECD. However, there were no correlations of total p75NTR immunoreactivity or ECD or ICD immunoreactivity with NDS or aspects of CAN. CONCLUSIONS/INTERPRETATION: Levels of the ECD of p75NTR are reduced and levels of the ICD are increased in the plasma of type 2 diabetic patients. None of the p75NTR subunits identified in human plasma seem to be a marker of peripheral or autonomic neuronal function in patients with type 2 diabetes
