9 research outputs found
G-Quadruplex Visualization in Cells via Antibody and Fluorescence Probe
G-quadruplexes (G4s) are noncanonical nucleic acids structures involved in key regulatory and pathological roles in eukaryotes, prokaryotes, and viruses: the development of specific antibodies and fluorescent probes represent an invaluable tool to understand their biological relevance. We here present three protocols for the visualization of G4s in cells, both uninfected and HSV-1 infected, using a specific antibody and a fluorescent G4 ligand, and the effect of the fluorescent ligand on a G4 binding protein, nucleolin, upon binding of the molecule to the nucleic acids structure
Ligand Exchange/Scrambling Study of Gold(I)-Phosphine Complexes in the Solid Phase by DESI-MS Analysis
Fluorescent Lipids as Probes for Sphingosine Kinase Activity by Capillary Electrophoresis
A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs
Abstract Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands
Distinct differences in metal ion specificity of RNA and DNA G-quadruplexes
RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li+, Na+, K+, Rb+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, and Ba2+. Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na+, K+, Rb+, NH4+, as well as Sr2+ and Ba2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K+ and Sr2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na+ ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes
