9 research outputs found

    Resected brain tissue, seizure onset zone and quantitative EEG measures: towards prediction of post-surgical seizure control

    Get PDF
    BACKGROUND/nEpilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure./n/nMETHODS/nDespite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels./n/nRESULTS/nIn patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings). The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied./n/nCONCLUSIONS/nWe conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that spatially extended networks might be more relevant for seizure generation, evolution and termination than a single highly localized brain region (i.e. a “focus”) where seizures start.This study was supported by the Swiss National Science Foundation (SNF) via the projects 122010, 124089, 140332 and 155950. R.G. Andrzejak was supported by grant No. FIS-2010-18204 of the Spanish Ministry of Education and Science and funding from the Volkswagen Foundation. M. Müller acknowledges the Consejo Nacionál de Ciencia y Technología, Mexico, project 156667. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Electrophysiological Biomarkers of Epilepsy

    No full text
    In patients being evaluated for epilepsy and in animal models of epilepsy, electrophysiological recordings are carried to capture seizures to determine the existence of epilepsy. Electroencephalography recordings from the scalp, or sometimes directly from the brain, are also used to locate brain areas where seizure begins, and in surgical treatment help plan the area for resection. As seizures are unpredictable and can occur infrequently, ictal recordings are not ideal in terms of time, cost, or risk when, for example, determining the efficacy of existing or new anti-seizure drugs, evaluating potential anti-epileptogenic interventions, or for prolonged intracerebral electrode studies. Thus, there is a need to identify and validate other electrophysiological biomarkers of epilepsy that could be used to diagnose, treat, cure, and prevent epilepsy. Electroencephalography recordings in the epileptic brain contain other interictal electrophysiological disturbances that can occur more frequently than seizures, such as interictal spikes (IIS) and sharp waves, and from invasive studies using wide bandwidth recording and small diameter electrodes, the discovery of pathological high-frequency oscillations (HFOs) and microseizures. Of IIS, HFOs, and microseizures, a significant amount of recent research has focused on HFOs in the pathophysiology of epilepsy. Results from studies in animals with epilepsy and presurgical patients have consistently found a strong association between HFOs and epileptogenic brain tissue that suggest HFOs could be a potential biomarker of epileptogenicity and epileptogenesis. Here, we discuss several aspects of HFOs, as well as IIS and microseizures, and the evidence that supports their role as biomarkers of epilepsy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13311-014-0259-0) contains supplementary material, which is available to authorized users

    Molecular Biomarkers for Diagnosis & Therapies of Alzheimer’s Disease

    No full text
    corecore