3,096 research outputs found
Evaluation of Coulomb potential in a triclinic cell with periodic boundary conditions
Lekner and Sperb's work on the evaluation of Coulomb energy and forces under
periodic boundary conditions is generalized that makes it possible to use a
triclinic unit cell in simulations in 3D rather than just an orthorhombic cell.
The expressions obtained are in a similar form as previously obtained by Lekner
and Sperb for the especial case of orthorhombic cell
The Leeway of Shipping Containers at Different Immersion Levels
The leeway of 20-foot containers in typical distress conditions is
established through field experiments in a Norwegian fjord and in open-ocean
conditions off the coast of France with wind speed ranging from calm to 14 m/s.
The experimental setup is described in detail and certain recommendations given
for experiments on objects of this size. The results are compared with the
leeway of a scaled-down container before the full set of measured leeway
characteristics are compared with a semi-analytical model of immersed
containers. Our results are broadly consistent with the semi-analytical model,
but the model is found to be sensitive to choice of drag coefficient and makes
no estimate of the cross-wind leeway of containers. We extend the results from
the semi-analytical immersion model by extrapolating the observed leeway
divergence and estimates of the experimental uncertainty to various realistic
immersion levels. The sensitivity of these leeway estimates at different
immersion levels are tested using a stochastic trajectory model. Search areas
are found to be sensitive to the exact immersion levels, the choice of drag
coefficient and somewhat less sensitive to the inclusion of leeway divergence.
We further compare the search areas thus found with a range of trajectories
estimated using the semi-analytical model with only perturbations to the
immersion level. We find that the search areas calculated without estimates of
crosswind leeway and its uncertainty will grossly underestimate the rate of
expansion of the search areas. We recommend that stochastic trajectory models
of container drift should account for these uncertainties by generating search
areas for different immersion levels and with the uncertainties in crosswind
and downwind leeway reported from our field experiments.Comment: 25 pages, 11 figures and 5 tables; Ocean Dynamics, Special Issue on
Advances in Search and Rescue at Sea (2012
Recommended from our members
Measurement of W± boson production in Pb+Pb collisions at √sNN=5.02Te with the ATLAS detector
A measurement of W± boson production in Pb+Pb collisions at sNN=5.02Te is reported using data recorded by the ATLAS experiment at the LHC in 2015, corresponding to a total integrated luminosity of 0.49nb-1. The W± bosons are reconstructed in the electron or muon leptonic decay channels. Production yields of leptonically decaying W± bosons, normalised by the total number of minimum-bias events and the nuclear thickness function, are measured within a fiducial region defined by the detector acceptance and the main kinematic requirements. These normalised yields are measured separately for W+ and W- bosons, and are presented as a function of the absolute value of pseudorapidity of the charged lepton and of the collision centrality. The lepton charge asymmetry is also measured as a function of the absolute value of lepton pseudorapidity. In addition, nuclear modification factors are calculated using the W± boson production cross-sections measured in pp collisions. The results are compared with predictions based on next-to-leading-order calculations with CT14 parton distribution functions as well as with predictions obtained with the EPPS16 and nCTEQ15 nuclear parton distribution functions. No dependence of normalised production yields on centrality and a good agreement with predictions are observed for mid-central and central collisions. For peripheral collisions, the data agree with predictions within 1.7 (0.9) standard deviations for W- (W+) bosons
Recommended from our members
Combination of searches for Higgs boson pairs in pp collisions at s=13TeV with the ATLAS detector
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb−1 of proton–proton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bb¯bb¯, bb¯W+W−, bb¯τ+τ−, W+W−W+W−, bb¯γγ and W+W−γγ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (κλ) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to −5.0<κλ<12.0 (−5.8<κλ<12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza–Klein Randall–Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model
Recommended from our members
Measurement of the Z(→ ℓ + ℓ −)γ production cross-section in pp collisions at √s = 13 TeV with the ATLAS detector
The production of a prompt photon in association with a Z boson is studied in proton-proton collisions at a centre-of-mass energy s = 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process pp → ℓ+ℓ−γ + X (ℓ = e, μ) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the ℓ+ℓ−γ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered. [Figure not available: see fulltext.]
Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)
Dao, harmony and personhood: towards a Confucian ethics of technology
A closer look at the theories and questions in philosophy of technology and ethics of technology shows the absence and marginality of non-Western philosophical traditions in the discussions. Although, increasingly, some philosophers have sought to introduce non-Western philosophical traditions into the debates, there are few systematic attempts to construct and articulate general accounts of ethics and technology based on other philosophical traditions. This situation is understandable, for the questions of modern sciences and technologies appear to be originated from the West; at the same time, the situation is undesirable. The overall aim of this paper, therefore, is to introduce an alternative account of ethics of technology based on the Confucian tradition. In doing so, it is hoped that the current paper can initiate a relatively uncharted field in philosophy of technology and ethics of technology
Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us
Supernova remnants (SNRs) arise from the interaction between the ejecta of a
supernova (SN) explosion and the surrounding circumstellar and interstellar
medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However,
to understand SNRs as a whole, large samples of SNRs must be assembled and
studied. Here, we describe the radio, optical, and X-ray techniques which have
been used to identify and characterize almost 300 Galactic SNRs and more than
1200 extragalactic SNRs. We then discuss which types of SNRs are being found
and which are not. We examine the degree to which the luminosity functions,
surface-brightness distributions and multi-wavelength comparisons of the
samples can be interpreted to determine the class properties of SNRs and
describe efforts to establish the type of SN explosion associated with a SNR.
We conclude that in order to better understand the class properties of SNRs, it
is more important to study (and obtain additional data on) the SNRs in galaxies
with extant samples at multiple wavelength bands than it is to obtain samples
of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by
Athem W. Alsabti and Paul Murdin. Final version available at
https://doi.org/10.1007/978-3-319-20794-0_90-
- …
