240 research outputs found

    NF90 Binds the Dengue Virus RNA 3′ Terminus and is a Positive Regulator of Dengue Virus Replication

    Get PDF
    Background Viral RNA translation and replication are regulated by sequence and structural elements in the 5′ and 3′ untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA genome with positive polarity, a 5′ m7GpppG cap, and a conserved 3′-terminal stem loop (SL) that is linked to proposed functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind the conserved dengue virus RNA 3′ terminus. Methodology/Principal Findings Proteins eluted from a dengue 3′ SL RNA affinity column at increasing ionic strength included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in dengue RNA levels and in production of infectious viral progeny. Conclusions/Significance The results indicate that NF90 interacts with the 3′ SL structure of the dengue RNA and is a positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens more than a billion people worldwide.Ruth L. Kirschstein National Research Service Award (NIH-NRSA GM64985)UNCF-Merck Postdoctoral FellowshipNational Institute of Allergy and Infectious Diseases (U.S.)Ellison Medical Foundatio

    Selenocysteine Insertion Sequence Binding Protein 2L Is Implicated as a Novel Post-Transcriptional Regulator of Selenoprotein Expression

    Get PDF
    The amino acid selenocysteine (Sec) is encoded by UGA codons. Recoding of UGA from stop to Sec requires a Sec insertion sequence (SECIS) element in the 3′ UTR of selenoprotein mRNAs. SECIS binding protein 2 (SBP2) binds the SECIS element and is essential for Sec incorporation into the nascent peptide. SBP2-like (SBP2L) is a paralogue of SBP2 in vertebrates and is the only SECIS binding protein in some invertebrates where it likely directs Sec incorporation. However, vertebrate SBP2L does not promote Sec incorporation in in vitro assays. Here we present a comparative analysis of SBP2 and SBP2L SECIS binding properties and demonstrate that its inability to promote Sec incorporation is not due to lower SECIS affinity but likely due to lack of a SECIS dependent domain association that is found in SBP2. Interestingly, however, we find that an invertebrate version of SBP2L is fully competent for Sec incorporation in vitro. Additionally, we present the first evidence that SBP2L interacts with selenoprotein mRNAs in mammalian cells, thereby implying a role in selenoprotein expression

    Intra-gastric balloon as an adjunct to lifestyle support in severely obese adolescents; Impact on weight, physical activity, cardio-respiratory fitness and psychosocial wellbeing.

    Get PDF
    BACKGROUND: Severe adolescent obesity (BMI>99.6th centile) is a significant public health challenge. Current non-invasive treatments, including community-based lifestyle interventions, are often of limited effectiveness in this population, with NICE guidelines suggesting the use of bariatric surgery as the last line of treatment (NICE, 2013). Health professionals are understandably reluctant to commission bariatric surgery and as an alternative, the use of an intra-gastric balloon as an adjunct to a lifestyle programme might offer a reversible, potentially safer and less invasive option. OBJECTIVES: Explore the use of an intra-gastric balloon as an adjunct to a lifestyle support programme, to promote weight loss in severely obese adolescents. Outcomes included Weight loss, Waist and Hip measurements, psychosocial outcomes including health related quality of life and physical self-perceptions, physical activity and cardiorespiratory fitness. METHOD: Non-randomised pilot study. Results: 12 severely obese adolescents (5 males, 7 females; mean age 15yrs; BMI >3.5 s.d.; puberty stage 4 or more) and their families were recruited. Mean weight loss at 12 months (n=9) was 3.05 kg±14.69; d=0.002, P=0.550, and a BMI Z-score (n=12) change of 0.2 s.d.; d=0.7, P=0.002 was observed at 6 months with a large effect, but was not sustained at 12 months (mean change 0.1 s.d.; d=0.3, P=0.146 ) At 24 months (n=10) there was a weight gain from baseline of +9.9 kg±1.21 (d=0.4; P=0.433). Adolescent and parent HRQoL scores exceeded the minimal clinical important difference between baseline and 12 months for all domains but showed some decline at 24 months. CONCLUSION: An intra-gastric balloon as an adjunct to a lifestyle support programme represents a safe and well tolerated treatment approach in severely obese adolescents, with short-term effects on weight change. Improvements in psychosocial health, physical activity and cardiorespiratory fitness were maintained at 12 months, with varying results at 24 months

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Racism as a determinant of health: a systematic review and meta-analysis

    Get PDF
    Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Explaining the Atypical Reaction Profiles of Heme Enzymes with a Novel Mechanistic Hypothesis and Kinetic Treatment

    Get PDF
    Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO) characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP), uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation) of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model) was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the “steady state kinetics” of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates) is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s) affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of “the product of interest” in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of “substrate concentration at maximum observed rate”. The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes

    Time-resolved crystallography using the Hadamard transform

    Get PDF
    YesWe describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.Wellcome Trust 4-year PhD program “The Molecular Basis of Biological Mechanisms” 089312/Z/09/Z. This work was also supported by the EPSRC Award “Dynamic Structural Science at the Research Complex at Harwell” EP/I01974X/1 and by BBSRC Award BB/H001905/1
    corecore