5 research outputs found
Acoustographic Evaluation of Ultrasonic Transducers
In order to have confidence in the nondestructive evaluation data generated by an ultrasonic system, it is important to establish the adequacy and reliability of the ultrasonic transducer employed in the system. This is usually accomplished by characterizing the electro-mechanical properties and the radiated acoustic field distribution of the transducer. The methodology for characterizing the electro-mechanical properties, including insertion loss, Q-factor, impulse and frequency spectrum, is well established and has been reported in the literature [1, 2]. Characterization of the acoustic field distribution involves determination of the beam diameter, propagation angle and axial and cross-sectional uniformity. The methods used for obtaining these field characteristics include the Schlieren [3], ball reflector [4] and hydrophone scanning [5]. Although these methods have been used effectively to characterize transducer fields, they do have some limitations. The Schlieren method requires elaborate optical set-ups and only yields the axial profile of the field distribution. The ball reflector and hydrophone methods are point-by-point scanning methods and therefore require complex scanning mechanisms and sophisticated electronic instrumentation for full characterization of the acoustic field
Transthoracic coronary flow reserve and dobutamine derived myocardial function: a 6-month evaluation after successful coronary angioplasty
After percutaneous transluminal coronary angioplasty (PTCA), stress-echocardiography and gated single photon emission computerized tomography (g-SPECT) are usually performed but both tools have technical limitations. The present study evaluated results of PTCA of left anterior descending artery (LAD) six months after PTCA, by combining transthoracic Doppler coronary flow reserve (CFR) and color Tissue Doppler (C-TD) dobutamine stress. Six months after PTCA of LAD, 24 men, free of angiographic evidence of restenosis, underwent standard Doppler-echocardiography, transthoracic CFR of distal LAD (hyperemic to basal diastolic coronary flow ratio) and C-TD at rest and during dobutamine stress to quantify myocardial systolic (S(m)) and diastolic (E(m )and A(m), E(m)/A(m )ratio) peak velocities in middle posterior septum. Patients with myocardial infarction, coronary stenosis of non-LAD territory and heart failure were excluded. According to dipyridamole g-SPECT, 13 patients had normal perfusion and 11 with perfusion defects. The 2 groups were comparable for age, wall motion score index (WMSI) and C-TD at rest. However, patients with perfusion defects had lower CFR (2.11 ± 0.4 versus 2.87 ± 0.6, p < 0.002) and septal S(m )at high-dose dobutamine (p < 0.01), with higher WMSI (p < 0.05) and stress-echo positivity of LAD territory in 5/11 patients. In the overall population, CFR was related negatively to high-dobutamine WMSI (r = -0.50, p < 0.01) and positively to high-dobutamine S(m )of middle septum (r = 0.55, p < 0.005). In conclusion, even in absence of epicardial coronary restenosis, stress perfusion imaging reflects a physiologic impairment in coronary microcirculation function whose magnitude is associated with the degree of regional functional impairment detectable by C-TD
Long-Term Treatment with Eicosapentaenoic Acid Improves Exercise-Induced Vasodilation in Patients with Coronary Artery Disease.
Ezetimibe added to statin therapy after acute coronary syndromes
BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit
