7 research outputs found

    Effective nebulization of interferon-γ using a novel vibrating mesh.

    Get PDF
    BACKGROUND: Interferon gamma (IFN-γ) is a clinically relevant immunomodulatory cytokine that has demonstrated significant potential in the treatment and management of respiratory diseases such as tuberculosis and pulmonary fibrosis. As with all large biomolecules, clinical translation is dependent on effective delivery to the disease site and delivery of IFN-γ as an aerosol offers a logical means of drug targeting. Effective localization is often hampered by instability and a lack of safe and efficient delivery systems. The present study sought to determine how effectively IFN-γ can be nebulized using two types of vibrating mesh nebulizer, each with differing mesh architectures, and to investigate the comparative efficiency of delivery of therapeutically active IFN-γ to the lungs. METHODS: Nebulization of IFN-γ was carried out using two different Aerogen vibrating mesh technologies with differing mesh architectures. These technologies represent both a standard commercially available mesh type (Aerogen Solo®) and a new iteration mesh (Photo-defined aperture plate (PDAP®). Extensive aerosol studies (aerosol output and droplet analysis, non-invasive and invasive aerosol therapy) were conducted in line with regulatory requirements and characterization of the stability and bioactivity of the IFN-γ post-nebulization was confirmed using SDS-PAGE and stimulation of Human C-X-C motif chemokine 10 (CXCL 10) also known as IFN-γ-induced protein 10KDa (IP 10) expression from THP-1 derived macrophages (THP-1 cells). RESULTS: Aerosol characterization studies indicated that a significant and reproducible dose of aerosolized IFN-γ can be delivered using both vibrating mesh technologies. Nebulization using both devices resulted in an emitted dose of at least 93% (100% dose minus residual volume) for IFN-γ. Characterization of aerosolized IFN-γ indicated that the PDAP was capable of generating droplets with a significantly lower mass median aerodynamic diameter (MMAD) with values of 2.79 ± 0.29 μm and 4.39 ± 0.25 μm for the PDAP and Solo respectively. The volume median diameters (VMD) of aerosolized IFN-γ corroborated this with VMDs of 2.33 ± 0.02 μm for the PDAP and 4.30 ± 0.02 μm for the Solo. SDS-PAGE gels indicated that IFN-γ remains stable after nebulization by both devices and this was confirmed by bioactivity studies using a THP-1 cell model in which an alveolar macrophage response to IFN-γ was determined. IFN-γ nebulized by the PDAP and Solo devices had no significant effect on the key inflammatory biomarker cytokine IP-10 release from this model in comparison to non-nebulized controls. Here we demonstrate that it is possible to combine IFN-γ with vibrating mesh nebulizer devices and facilitate effective aerosolisation with minimal impact on IFN-γ structure or bioactivity. CONCLUSIONS: It is possible to nebulize IFN-γ effectively with vibrating mesh nebulizer devices without compromising its stability. The PDAP allows for generation of IFN-γ aerosols with improved aerodynamic properties thereby increasing its potential efficiency for lower respiratory tract deposition over current technology, whilst maintaining the integrity and bioactivity of IFN-γ. This delivery modality therefore offers a rational means of facilitating the clinical translation of inhaled IFN-γ

    Genotypic and environmental effects on wheat technological and nutritional quality

    No full text
    International audienceTechnological (processing performance and end-product) and nutritional quality of wheat is in principle determined by a number of compounds within the wheat grain, including proteins, polysaccharides, lipids, minerals, heavy metals, vitamins and phytochemicals, effecting these characters. The genotype and environment is of similar importance for the determination of the content and composition of these compounds. Furthermore, the interaction between genotypes and the cultivation environment may play a significant role. Many studies have evaluated whether the genotype or the environment plays the major role in determining the content of the mentioned compounds. An overall conclusion of these studies is that except for compounds encoded by single major genes, importance of certain factors mainly depend on how wide environments and how diverse cultivars are within these comparative studies. Comparing environments all over, e.g. across Latin America, ends up with a high significance of the environment while large studies including genotypes of wide genetic background result in a significant role for the genotype. In addition, for some technological properties and components, genotype has a higher effect (e.g. grain hardness and gluten proteins), while environment influences stronger on others (e.g. protein and mineral content).Content and concentration of proteins, but also to some extent of starch, some non-starch polysaccharides and lipids, are essential in determining the technological quality of a wheat flour. For nutritional quality of the flour, the majority of the compounds are together the important determinant. Thus an increased understanding of environmental effects is essential. As to how the environment is influencing the content of the compounds, there are some differences. The protein content and composition is strongly affected by environmental factors influencing nitrogen availability and cultivar development time. However, these two factors are impacted by a range of environmental (temperature, precipitation, humidity/sun hours, etc.) and agronomic (soil properties, crop management practices such as seeding density, nitrogen fertilizer application timing and amount, etc.) components. Thus, to understand the interplay between the various environmental and agronomic factors impacting the technological quality of a wheat flour, modeling is a useful tool. Several other compounds, including minerals and heavy metals, are to a higher extent determined by site specific variation, resulting in similar rankings of entries across locations, although the total content is varying among years. The bioactive compounds and vitamins are a part of the defense mechanisms of plants and thus there is a variation in these compounds depending on prevailing biotic and abiotic stresses (heat, drought, excess rainfall, nutrition, diseases and pests). Thus, even for nutritional quality of wheat, incorporating all compounds of relevance in the evaluation would benefit from modeling tools

    Chronic neuropathologies of single and repetitive TBI: substrates of dementia?

    No full text
    Traumatic brain injury (TBI) has long been recognized to be a risk factor for dementia. This association has, however, only recently gained widespread attention through the increased awareness of 'chronic traumatic encephalopathy' (CTE) in athletes exposed to repetitive head injury. Originally termed 'dementia pugilistica' and linked to a career in boxing, descriptions of the neuropathological features of CTE include brain atrophy, cavum septum pellucidum, and amyloid-β, tau and TDP-43 pathologies, many of which might contribute to clinical syndromes of cognitive impairment. Similar chronic pathologies are also commonly found years after just a single moderate to severe TBI. However, little consensus currently exists on specific features of these post-TBI syndromes that might permit their confident clinical and/or pathological diagnosis. Moreover, the mechanisms contributing to neurodegeneration following TBI largely remain unknown. Here, we review the current literature and controversies in the study of chronic neuropathological changes after TBI

    Traumatic brain injury as a trigger of neurodegeneration

    No full text
    Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative "dose" of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration
    corecore