1,582 research outputs found
Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae)
The utility of microsatellites (SSRs) in reconstructing phylogenies is largely confined to studies below the genus
level, due to the potential of homoplasy resulting from allele size range constraints and poor SSR transferability
among divergent taxa. The eucalypt genus Corymbia has been shown to be monophyletic using morphological characters,
however, analyses of intergenic spacer sequences have resulted in contradictory hypotheses- showing the
genus as either equivocal or paraphyletic. To assess SSR utility in higher order phylogeny in the family Myrtaceae,
phylogenetic relationships of the bloodwood eucalypts Corymbia and related genera were investigated using eight
polymorphic SSRs. Repeat size variation using the average square and Nei’s distance were congruent and showed
Corymbia to be a monophyletic group, supporting morphological characters and a recent combination of the internal
and external transcribed spacers dataset. SSRs are selectively neutral and provide data at multiple genomic regions,
thus may explain why SSRs retained informative phylogenetic signals despite deep divergences. We show that
where the problems of size-range constraints, high mutation rates and size homoplasy are addressed, SSRs might
resolve problematic phylogenies of taxa that have diverged for as long as three million generations or 30 million
years.
Key word
The neonicotinoid insecticide Imidacloprid repels pollinating flies and beetles at field-realistic concentrations
Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 μg L-1, with Diptera avoiding concentrations as low as 0.01 μg L-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 μg L-1), but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination. © 2013 Easton, Goulson
The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos
The interior structure of the Sun can be studied with great accuracy using
observations of its oscillations, similar to seismology of the Earth. Precise
agreement between helioseismological measurements and predictions of
theoretical solar models has been a triumph of modern astrophysics (Bahcall et
al. 2005). However, a recent downward revision by 25-35% of the solar
abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has
broken this accordance: models adopting the new abundances incorrectly predict
the depth of the convection zone, the depth profiles of sound speed and
density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The
discrepancies are far beyond the uncertainties in either the data or the model
predictions (Bahcall et al. 2005b). Here we report on neon abundances relative
to oxygen measured in a sample of nearby solar-like stars from their X-ray
spectra. They are all very similar and substantially larger than the recently
revised solar value. The neon abundance in the Sun is quite poorly determined.
If the Ne/O abundance in these stars is adopted for the Sun the models are
brought back into agreement with helioseismology measurements (Antia Basu 2005,
Bahcall et al. 2005c).Comment: 13 pages, 3 Figure
MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads
New insights into the classification and nomenclature of cortical GABAergic interneurons.
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Risk stratification by pre-operative cardiopulmonary exercise testing improves outcomes following elective abdominal aortic aneurysm surgery : a cohort study
Background:
In 2009, the NHS evidence adoption center and National Institute for Health and Care Excellence (NICE) published a review of the use of endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms (AAAs). They recommended the development of a risk-assessment tool to help identify AAA patients with greater or lesser risk of operative mortality and to contribute to mortality prediction.
A low anaerobic threshold (AT), which is a reliable, objective measure of pre-operative cardiorespiratory fitness, as determined by pre-operative cardiopulmonary exercise testing (CPET) is associated with poor surgical outcomes for major abdominal surgery. We aimed to assess the impact of a CPET-based risk-stratification strategy upon perioperative mortality, length of stay and non-operative costs for elective (open and endovascular) infra-renal AAA patients.
Methods:
A retrospective cohort study was undertaken. Pre-operative CPET-based selection for elective surgical intervention was introduced in 2007. An anonymized cohort of 230 consecutive infra-renal AAA patients (2007 to 2011) was studied. A historical control group of 128 consecutive infra-renal AAA patients (2003 to 2007) was identified for comparison.
Comparative analysis of demographic and outcome data for CPET-pass (AT ≥ 11 ml/kg/min), CPET-fail (AT < 11 ml/kg/min) and CPET-submaximal (no AT generated) subgroups with control subjects was performed. Primary outcomes included 30-day mortality, survival and length of stay (LOS); secondary outcomes were non-operative inpatient costs.
Results:
Of 230 subjects, 188 underwent CPET: CPET-pass n = 131, CPET-fail n = 35 and CPET-submaximal n = 22. When compared to the controls, CPET-pass patients exhibited reduced median total LOS (10 vs 13 days for open surgery, n = 74, P < 0.01 and 4 vs 6 days for EVAR, n = 29, P < 0.05), intensive therapy unit requirement (3 vs 4 days for open repair only, P < 0.001), non-operative costs (£5,387 vs £9,634 for open repair, P < 0.001) and perioperative mortality (2.7% vs 12.6% (odds ratio: 0.19) for open repair only, P < 0.05). CPET-stratified (open/endovascular) patients exhibited a mid-term survival benefit (P < 0.05).
Conclusion:
In this retrospective cohort study, a pre-operative AT > 11 ml/kg/min was associated with reduced perioperative mortality (open cases only), LOS, survival and inpatient costs (open and endovascular repair) for elective infra-renal AAA surgery
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
