430 research outputs found

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    Get PDF
    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Milk: the new sports drink? A Review

    Get PDF
    There has been growing interest in the potential use of bovine milk as an exercise beverage, especially during recovery from resistance training and endurance sports. Based on the limited research, milk appears to be an effective post-resistance exercise beverage that results in favourable acute alterations in protein metabolism. Milk consumption acutely increases muscle protein synthesis, leading to an improved net muscle protein balance. Furthermore, when post-exercise milk consumption is combined with resistance training (12 weeks minimum), greater increases in muscle hypertrophy and lean mass have been observed. Although research with milk is limited, there is some evidence to suggest that milk may be an effective post-exercise beverage for endurance activities. Low-fat milk has been shown to be as effective, if not more effective, than commercially available sports drinks as a rehydration beverage. Milk represents a more nutrient dense beverage choice for individuals who partake in strength and endurance activities, compared to traditional sports drinks. Bovine low-fat fluid milk is a safe and effective post exercise beverage for most individuals, except for those who are lactose intolerant. Further research is warranted to better delineate the possible applications and efficacy of bovine milk in the field of sports nutrition

    Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films

    Full text link
    In this study, antioxidant biodegradable films based on pea protein and alpha-tocopherol were successfully developed by solution casting. The effect of both the homogenization conditions (rotor stator and microfluidizer) and the relative humidity (RH) on the microstructure and physical properties (transparency, tensile, oxygen and water vapour barrier properties) of pea protein/alpha-tocopherol-based films was evaluated. The addition of alpha-tocopherol produced minimal changes in the films transparency, while providing them with antioxidant properties and improved water vapour and oxygen barrier properties (up to 30 % in both water vapour and oxygen permeability) when films were at low and intermediate RH. The addition of alpha-tocopherol in microfluidized films gave rise to an increase in their resistance to break and extensibility (up to 27 % in E values) at intermediate and high RH. These results add a new insight into the potential of employing pea protein and alpha-tocopherol in the development of fully biodegradable antioxidant films which are of interest in food packagingThe authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia throughout the project AGL2010-20694, co-funded by FEDER. Author M.J.Fabra is a recipient of a Juan de la Cierva contract from the Spanish Ministerio de Economia y Competitividad.Fabra, MJ.; Jiménez, A.; Talens Oliag, P.; Chiralt, A. (2014). Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films. Food and Bioprocess Technology. 7(12):3569-3578. https://doi.org/10.1007/s11947-014-1372-0S35693578712ASTM (1995). Standard test methods for water vapor transmission of materials. Standards Desingnations: E96-95. In: Annual Book of ASTM Standards (pp. 406-413); American Society for Testing and Materials: Philadelphia, PA.ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. In: Annual book of American Standard Testing Methods (pp 162-170). D882. Philadelphia:ASTM.Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin. Food Hydrocolloids, 19(1), 73–82.Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with alpha-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100, 239–244.Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2014). Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization. Food and Bioprocess Technology, 7(5), 1472–1482.Choi, W. S., & Han, J. H. (2001). Physical and mechanical properties of pea–protein-based edible films. Journal of Food Science, 66, 319–322.Choi, W. S., & Han, J. H. (2002). Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. Journal of Food Science, 67, 1399–1406.Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acidebeeswax mixtures. Food Hydrocolloids, 23, 676–683.Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24, 384–391.Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25, 1441–1447.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109, 372–379.Frankel, E. N., Huang, S. W., Kanner, J., & German, J. B. (1994). Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. Journal of Agriculture and Food Chemistry, 42(5), 1054–1059.Gómez-Estaca, J., Giménez, B., Montero, P., & Gómez-Guillén, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92, 78–85.Huang, S. W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of alpha.- and.gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agriculture and Food Chemistry, 42(10), 2108–2114.Hutchings, J. B. (1999). Food and colour appearance (2nd ed.). Gaithersburg: Chapman and Hall Food Science Book, Aspen Publication.Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropylmethylcellulose edible films containing fatty acids. Carbohydrate Polymers, 82(3), 585–593.Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695–702.Jung, M. Y., & Min, D. B. (1990). Effects of alpha-. γ-, and δ-tocopherols on oxidative stability of soybean oil. Journal of Food Science, 55(5), 1464–1465.López-de-Dicastillo, C., Alonso, J. M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. Journal of Agricultural and Food Chemistry, 58, 10958–10964.Ma, W., Tang, C.-H., Yin, S.-W., Yang, X. Q., Qi, J. R., & Xia, N. (2012). Effect of homogenization conditions on properties of gelatin-olive oil composite films. Journal of Food Engineering, 113(1), 136–142.Mauer, L. J., Smith, D. E., & Labuza, T. P. (2000). Water vapor permeability, mechanical, and structural properties of edible β-casein films. International Dairy Journal, 10(5–6), 353–358.Mc Hugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophobic edible films:modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.McHugh, T. H., & Krochta, J. M. (1994). Dispersed phase particle size effects on water vapour permeability of whey protein–beeswax emulsion films. Journal of Food Processing and Preservation, 18, 173–188.Ozkan, G., Simsek, B., & Kuleasan, H. (2007). Antioxidant activities of Satureja cilicica essential oil in butter and in vitro. Journal of Food Engineering, 79, 1391–1396.Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science and Emerging Technologies, 12, 50–55.Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radical Biology and Medicine, 26, 1231–1237.Roos, Y. H. (1995). Phase transitions in food. San Diego: Academic Press.Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S., & Mauri, A. N. (2010). Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocolloids, 24(5), 525–533.Salgado, P. R., Fernández, G. B., Drago, S. R., & Mauri, A. N. (2011). Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocolloids, 25, 1433–1440.Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2008). Autolysis-assisted production of fish protein hydrolysates with antioxidant properties form Pacific hake (Merluccius productus). Food Chemistry, 107, 768–776.Souza, B. W. S., Cerqueira, A., Casariego, A., Lima, A. M. P., Teixeira, J. A., & Vicente, A. A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23, 2110–2115

    Decline in Health-Related Quality of Life reported by more than half of those waiting for joint replacement surgery: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many healthcare systems, people with severe joint disease wait months to years for joint replacement surgery. There are little empirical data on the health consequences of this delay and it is unclear whether people with substantial morbidity at entry to the waiting list continue to deteriorate further while awaiting surgery. This study investigated changes in Health-Related Quality of Life (HRQoL), health status and psychological distress among people waiting for total hip (THR) and knee replacement (TKR) surgery at a major metropolitan Australian public hospital.</p> <p>Methods</p> <p>134 patients completed questionnaires including the Assessment of Quality of Life (AQoL) instrument, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Kessler Psychological Distress Scale after entering an orthopaedic waiting list (baseline) and before surgery (preadmission). To quantify potential decline in wellbeing, we calculated the proportion of people experiencing clinically important deterioration using published guidelines and compared HRQoL and psychological distress outcomes with population norms.</p> <p>Results</p> <p>Most participants (69%) waited ≥6 months for surgery (median 286 days, IQR 169-375 days). Despite poor physical and psychological wellbeing at baseline, there was an overall deterioration in HRQoL during the waiting period (mean AQoL change -0.04, 95%CI -0.08 to -0.01), with 53% of participants experiencing decline in HRQoL (≥0.04 AQoL units). HRQoL prior to surgery remained substantially lower than Australian population norms (mean sample AQoL 0.37, 95%CI 0.33 to 0.42 vs mean population AQoL 0.83, 95%CI 0.82 to 0.84). Twenty-five per cent of participants showed decline in health status (≥9.6 WOMAC units) over the waiting period and prevalence of high psychological distress remained high at preadmission (RR 3.5, 95%CI 2.8 to 4.5). Most participants considered their pain (84%), fatigue (76%), quality of life (73%) and confidence in managing their health (55%) had worsened while waiting for surgery.</p> <p>Conclusions</p> <p>Despite substantial initial morbidity, over half of the participants awaiting joint replacement experienced deterioration in HRQoL during the waiting period. These data provide much-needed evidence to guide health professionals and policymakers in the design of care pathways and resource allocation for people who require joint replacement surgery.</p
    corecore