114 research outputs found

    Development of a biosensor for urea assay based on amidase inhibition, using an ion-selective electrode

    Get PDF
    A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition

    Lung epithelial stem cells and their niches : Fgf10 takes center stage

    Get PDF
    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF)

    Nitric oxide release using natural rubber latex as matrix

    Get PDF
    Nitric oxide (NO) is a diffusible messenger that has been involved in numerous physiological processes ranging from vasodilatation and antimicrobial properties to wound healing. The beneficial effects can be attributed to the role NO plays in angiogenesis, inflammation and tissue remodeling. In the present work, a polymeric device for the sustained site specific delivery of nitric oxide using a latex rubber matrix from Hevea brasiliensis which encapsulates the spin trap iron(II)- diethyldithiocarbamate complex (FeDETC) was developed. The release profiles of NO from latex rubber matrix were studied and stability studies were carried out. Electron Paramagnetic Resonance (EPR) signal of NO was detected in the membrane exposed to ambient atmosphere at room temperature (25 °C) even after 350 hours. FTIR spectroscopy data indicated that NO-FeDETC retained its structural and spectroscopic properties upon encapsulation in the latex matrix. The NO delivery system developed in this work as a membrane, presented high stability.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)UNESP Faculdade de Ciências e Letras de Assis Departamento de Ciências BiológicasUniversidade Sagrado CoraçãoUSP Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Física e MatemáticaUniversidade Federal de Itajubá Departamento de Física e QuímicaUNESP Faculdade de Ciências Departamento de FísicaUNESP Faculdade de Ciências e Letras de Assis Departamento de Ciências BiológicasUNESP Faculdade de Ciências Departamento de Físic

    The distribution of lung cancer across sectors of society in the United Kingdom: a study using national primary care data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is pressing need to diagnose lung cancer earlier in the United Kingdom (UK) and it is likely that research using computerised general practice records will help this process. Linkage of these records to area-level geo-demographic classifications may also facilitate case ascertainment for public health programmes, however, there have as yet been no extensive studies of data validity for such purposes.</p> <p>Methods</p> <p>To first address the need for validation, we assessed the completeness and representativeness of lung cancer data from The Health Improvement Network (THIN) national primary care database by comparing incidence and survival between 2000 and 2009 with the UK National Cancer Registry and the National Lung Cancer Audit Database. Secondly, we explored the potential of a geo-demographic social marketing tool to facilitate disease ascertainment by using Experian's Mosaic Public Sector ™ classification, to identify detailed profiles of the sectors of society where lung cancer incidence was highest.</p> <p>Results</p> <p>Overall incidence of lung cancer (41.4/100, 000 person-years, 95% confidence interval 40.6-42.1) and median survival (232 days) were similar to other national data; The incidence rate in THIN from 2003-2006 was found to be just over 93% of the national cancer registry rate. Incidence increased considerably with area-level deprivation measured by the Townsend Index and was highest in the North-West of England (65.1/100, 000 person-years). Wider variations in incidence were however identified using Mosaic classifications with the highest incidence in Mosaic Public Sector ™types 'Cared-for pensioners, ' 'Old people in flats' and 'Dignified dependency' (191.7, 174.2 and 117.1 per 100, 000 person-years respectively).</p> <p>Conclusions</p> <p>Routine electronic data in THIN are a valid source of lung cancer information. Mosaic ™ identified greater incidence differentials than standard area-level measures and as such could be used as a tool for public health programmes to ascertain future cases more effectively.</p

    Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity

    Get PDF
    Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection

    Rationale, design and methodology of a double-blind, randomized, placebo-controlled study of escitalopram in prevention of Depression in Acute Coronary Syndrome (DECARD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of depression in patients with acute coronary syndrome, i.e. myocardial infarction and unstable angina, is higher than in the general population. The prevalence of anxiety is higher as well. Both depression and anxiety are associated with poor cardiac outcomes and higher mortality. Comorbid depression in patients with acute coronary syndrome often goes undiagnosed, and it is therefore a challenging task to prevent this risk factor. The study of DEpression in Coronary ARtery Disease (DECARD) is designed to examine if it is possible to prevent depression in patients with acute coronary syndrome.</p> <p>Methods</p> <p>Two hundred forty non-depressed patients with acute coronary syndrome are randomized to treatment with either escitalopram or placebo for 1 year. Psychiatric and cardiac assessment of patients is performed to evaluate the possibility of preventing depression. Diagnosis of depression and Hamilton Depression Scale are the primary outcome measures.</p> <p>Discussion</p> <p>This is the first study of prevention of depression in patients after acute coronary syndrome with a selective serotonin reuptake inhibitor.</p> <p>Trial Registration</p> <p><url>http://www.ClinicalTrials.gov.</url> Identifier: NCT00140257</p

    Technical design of the phase I Mu3e experiment

    Get PDF
    The Mu3e experiment aims to find or exclude the lepton flavour violating decay μ→eee at branching fractions above 10−16. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of 2⋅10−15. We present an overview of all aspects of the technical design and expected performance of the phase I Mu3e detector. The high rate of up to 108 muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements
    corecore