715 research outputs found
Safety and tolerability of rifaximin for the treatment of irritable bowel syndrome without constipation: a pooled analysis of randomised, double‐blind, placebo‐controlled trials
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106831/1/apt12735.pd
Mealybug Chromosome Cycle as a Paradigm of Epigenetics
Recently, epigenetics has had an ever-growing impact on research not only for its intrinsic interest but also because it has been implied in biological phenomena, such as tumor emergence and progression. The first epigenetic phenomenon to be described in the early 1960s was chromosome imprinting in some insect species (sciaridae and coccoideae). Here, we discuss recent experimental results to dissect the phenomenon of imprinted facultative heterochromatinization in Lecanoid coccids (mealybugs). In these insect species, the entire paternally derived haploid chromosome set becomes heterochromatic during embryogenesis in males. We describe the role of known epigenetic marks, such as DNA methylation and histone modifications, in this phenomenon. We then discuss the models proposed to explain the noncanonical chromosome cycle of these species
A Network of MicroRNAs and mRNAs Involved in Melanosome Maturation and Trafficking Defines the Lower Response of Pigmentable Melanoma Cells to Targeted Therapy
Simple Summary Selective inhibitors of mutant BRAFV600E (BRAFi) have revolutionized the treatment of metastatic melanoma patients and represent a powerful example of the efficacy of targeted therapy. However, one of the main limitations of BRAFi is that treated cells put in place several adaptive response mechanisms, which initially confer drug tolerance and later provide a gateway for the insurgence of genetically acquired resistance mechanisms. We previously discovered that pigmentation is one of these adaptive response mechanisms. Upon BRAFi treatment, those cells that increase their pigmentation level are more resistant to BRAFi than those that do not. Here, we demonstrate that pigmentation limits BRAFi activity through an increase in the number of intracellular mature melanosomes. We also show that this increase derives from increased maturation and/or trafficking. In addition, we identify the miRNAs and mRNAs that are involved in these biological processes. Finally, we provide the rationale for testing a new combinatorial therapeutic strategy that aims at increasing BRAFi efficacy by blocking the adaptive responses that they elicit. This strategy is based on the combined use of BRAFi with inhibitors of pigmentation, specifically inhibitors of melanosome maturation and/or trafficking. Background: The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells. Methods: Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos). Results: Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as GPR143, OCA2, RAB27A, RAB32 and TYRP1 mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem. Conclusion: We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells
Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB) Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics
The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER) known as transcription coupled repair (TCR). CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP) technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity
ESPEN Guideline: Clinical Nutrition in inflammatory bowel disease
Introduction: The ESPEN guideline presents a multidisciplinary focus on clinical nutrition in inflammatory bowel disease (IBD). Methodology: The guideline is based on extensive systematic review of the literature, but relies on expert opinion when objective data were lacking or inconclusive. The conclusions and 64 recommendations have been subject to full peer review and a Delphi process in which uniformly positive responses (agree or strongly agree) were required. Results: IBD is increasingly common and potential dietary factors in its aetiology are briefly reviewed. Malnutrition is highly prevalent in IBD – especially in Crohn's disease. Increased energy and protein requirements are observed in some patients. The management of malnu-trition in IBD is considered within the general context of support for malnourished patients. Treatment of iron deficiency (parenterally if necessary) is strongly recommended. Routine provision of a special diet in IBD is not however supported. Parenteral nutrition is indicated only when enteral nutrition has failed or is impossible. The recommended perioperative man-agement of patients with IBD undergoing surgery accords with general ESPEN guidance for patients having abdominal surgery. Probiotics may be helpful in UC but not Crohn's disease. Primary therapy using nutrition to treat IBD is not supported in ulcerative colitis, but is mod-erately well supported in Crohn's disease, especially in children where the adverse conse-quences of steroid therapy are proportionally greater. However, exclusion diets are generally not recommended and there is little evidence to support any particular formula feed when nutritional regimens are constructed. Conclusions: Available objective data to guide nutritional support and primary nutritional therapy in IBD are presented as 64 recommendations, of which 9 are very strong recom-mendations (grade A), 22 are strong recommendations (grade B) and 12 are based only on sparse evidence (grade 0); 21 recommendations are good practice points (GPP)
Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly Drosophila melanogaster
The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/ cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals. Our results demonstrated that plumbagin ameliorates the visual performance of hyperglycemic flies. Drosophila eye-structure, clearly altered by hyperglycemia, i.e. defects of the pattern of ommatidia, irregular rhabdomeres, vacuoles, damaged mitochondria, and abnormal phototransduction units were rescued, at least in part, by plumbagin. In addition, it reactivated autophagy, decreased the presence of cell death/apoptotic features, and exerted antioxidant effects in the retina. In terms of mechanisms favoring death/survival ratio, Nrf2 signaling activation may be one of the strategies by which plumbagin reduced redox unbalance mainly increasing the levels of glutathione-S-transferase. Likewise, plumbagin may act additively and/or synergistically inhibiting the mitochondrial-endoplasmic reticulum stress and unfolded protein response pathways, which prevented neuronal impairment and eye damage induced by reactive oxygen species. These results provide an avenue for further studies, which may be helpful to develop novel therapeutic candidates and drug targets against eye neurotoxicity by high glucose, a key aspect in retinal complications of diabetes
The natural compound climacostol as a prodrug strategy based on pH activation for efficient delivery of cytotoxic small agents
We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds
The Natural Compound Climacostol as a Prodrug Strategy Based on pH Activation for Efficient Delivery of Cytotoxic Small Agents
We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility
of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its
cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment
that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMOmolecule in vivo.MOMO affected oviposition ofmating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pHdependence of MOMO effects. In this respect, MOM-protection emerges as a potential
prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds
- …
