1,628 research outputs found

    Abóbora-gila (cucurbita ficifolia), uma hortaliça pouco convencional cultivada no Rio Grande do Sul.

    Get PDF
    bitstream/item/78979/1/documento-320.pd

    Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrin-Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic syndrome characterized by sudden death. There are several genetic forms of CPVT associated with mutations in genes encoding the cardiac ryanodine receptor (RyR2) and its auxiliary proteins including calsequestrin (CASQ2) and calmodulin (CaM). It has been suggested that impairment of the ability of RyR2 to stay closed (ie, refractory) during diastole may be a common mechanism for these diseases. Here, we explore the possibility of engineering CaM variants that normalize abbreviated RyR2 refractoriness for subsequent viral-mediated delivery to alleviate arrhythmias in non-CaM-related CPVT

    Transferibilidade de marcadores microssatélites de coco (Cocos nucifera) para butiá (Butia odorata)

    Get PDF
    Made available in DSpace on 2013-09-17T23:57:49Z (GMT). No. of bitstreams: 1 RosaLia13Artigo1012Claudeterevisado1.pdf: 142241 bytes, checksum: c5f5cfca34251aed1776d0589b6d888f (MD5) Previous issue date: 2013-09-17201

    TRANSCRANIAL DIRECT CURRENT STIMULATION ENHANCES SUCKING OF A LIQUID BOLUS IN HEALTHY HUMANS

    Get PDF
    BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive technique used for modulating cortical excitability in vivo in humans. Here we evaluated the effect of tDCS on behavioral and electrophysiological aspects of physiological sucking and swallowing. METHODS: Twelve healthy subjects underwent three tDCS sessions (anodal, cathodal and sham stimulation) on separate days in a double-blind randomized order. The active electrode was placed over the right swallowing motor cortex. Repeated sucking and swallowing acts were performed at baseline and at 15 and 60 min after each tDCS session and the mean liquid bolus volume ingested at each time point was measured. We also calculated average values of the following electrophysiological parameters: 1) area and 2) duration of the rectified EMG signal from the suprahyoid/submental muscles related to the sucking and swallowing phases; 3) EMG peak amplitude for the sucking and swallowing phases; 4) area and peak amplitude of the laryngeal-pharyngeal mechanogram; 5) oropharyngeal delay. RESULTS: The volume of the ingested bolus significantly increased (by an average of about 30% compared with the baseline value) both at 15 and at 60 min after the end of anodal tDCS. The electrophysiological evaluation after anodal tDCS showed a significant increase in area and duration of the sucking phase-related EMG signal. CONCLUSIONS: Anodal tDCS leads to stronger sucking of a liquid bolus in healthy subjects, likely by increasing recruitment of cortical areas of the swallowing network. This finding might open up interesting perspectives for the treatment of patients suffering from dysphagia due to various pathological conditions

    Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines

    Get PDF
    We investigate the self-phase modulation of intense femtosecond laser pulses propagating in an ionizing gas and its effects on collective properties of high-order harmonics generated in the medium. Plasmas produced in the medium are shown to induce a positive frequency chirp on the leading edge of the propagating laser pulse, which subsequently drives high harmonics to become positively chirped. In certain parameter regimes, the plasma-induced positive chirp can help to generate sharply peaked high harmonics, by compensating for the dynamically-induced negative chirp that is caused by the steep intensity profile of intense short laser pulses.Comment: 5 pages, 5 figure
    corecore