236 research outputs found
Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei
The acoustic nucleation threshold for bubbles trapped in cavities has theoretically been predicted within the crevice theory by Atchley and Prosperetti [“The crevice model of bubble nucleation,” J. Acoust. Soc. Am. 86, 1065 (1989)]. Here, we determine this threshold experimentally, by applying\ud
a single pressure pulse to bubbles trapped in cylindrical nanoscopic pits (“artificial crevices”) with radii down to 50 nm. By decreasing the minimum pressure stepwise, we observe the threshold for which the bubbles start to nucleate. The experimental results are quantitatively in good agreement with the theoretical predictions of Atchley and Prosperetti. In addition, we provide the mechanism which explains the deactivation of cavitation nuclei: gas diffusion together with an aspherical bubble collapse. Finally, we present superhydrophobic nuclei which cannot be deactivated, unless with a high-speed liquid jet directed into the pit
Orthogonal, solenoidal, three-dimensional vector fields for no-slip boundary conditions
Viscous fluid dynamical calculations require no-slip boundary conditions.
Numerical calculations of turbulence, as well as theoretical turbulence closure
techniques, often depend upon a spectral decomposition of the flow fields.
However, such calculations have been limited to two-dimensional situations.
Here we present a method that yields orthogonal decompositions of
incompressible, three-dimensional flow fields and apply it to periodic
cylindrical and spherical no-slip boundaries.Comment: 16 pages, 2 three-part figure
An Alternative Method to Deduce Bubble Dynamics in Single Bubble Sonoluminescence Experiments
In this paper we present an experimental approach that allows to deduce the
important dynamical parameters of single sonoluminescing bubbles (pressure
amplitude, ambient radius, radius-time curve) The technique is based on a few
previously confirmed theoretical assumptions and requires the knowledge of
quantities such as the amplitude of the electric excitation and the phase of
the flashes in the acoustic period. These quantities are easily measurable by a
digital oscilloscope, avoiding the cost of expensive lasers, or ultrafast
cameras of previous methods. We show the technique on a particular example and
compare the results with conventional Mie scattering. We find that within the
experimental uncertainties these two techniques provide similar results.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
Bubble Shape Oscillations and the Onset of Sonoluminescence
An air bubble trapped in water by an oscillating acoustic field undergoes
either radial or nonspherical pulsations depending on the strength of the
forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor
instability and parametric instability) cause deviations from sphericity.
Distinguishing these mechanisms allows explanation of many features of recent
experiments on sonoluminescence, and suggests methods for finding
sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres
Recommended from our members
Numerical simulation of cavitation and atomization using a fully compressible three-phase model
The aim of this paper is to present a fully compressible three-phase (liquid, vapour and air) model and its application to the simulation of in-nozzle cavitation effects on liquid atomization. The model employs a combination of homogeneous equilibrium barotropic cavitation model with an implicit sharp interface capturing VoF approximation. The numerical predictions are validated against the experimental results obtained for injection of water into the air from a step-nozzle, which is designed to produce asymmetric cavitation along its two sides. Simulations are performed for three injection pressures, corresponding to three different cavitation regimes, referred to as cavitation inception, developing cavitation and hydraulic-flip. Model validation is achieved by qualitative comparison of the cavitation, spray pattern and spray cone angles. The flow turbulence in this study is resolved using the Large Eddy Simulation approach. The simulation results indicate that the major parameters that influence the primary atomization are cavitation, liquid turbulence and, to a smaller extent, the Rayleigh-Taylor and Kelvin-Helmholtz aerodynamic instabilities developing on the liquid/air interface. Moreover, the simulations performed indicate that periodic entrainment of air into the nozzle occurs at intermediate cavitation numbers, corresponding to developing cavitation (as opposed to incipient and fully-developed cavitation regimes); this transient effect causes a periodic shedding of the cavitation and air clouds and contributes to improved primary atomization. Finally, the cone angle of the spray is found to increase with increased injection pressure but drops drastically when hydraulic-flip occurs, in agreement with the relevant experiments
Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique
The theoretical results regarding the ``transition frequencies'' of two
acoustically interacting bubbles have been verified numerically. The theory
provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three
transition frequencies per bubble, each of which has the phase difference of
between a bubble's pulsation and the external sound field, while
previous theories predicted only two natural frequencies which cause such phase
shifts. Namely, two of the three transition frequencies correspond to the
natural frequencies, while the remaining does not. In a subsequent paper [M.
Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition
frequencies other than the natural frequencies may cause the sign reversal of
the secondary Bjerknes force acting between pulsating bubbles. In the present
study, we employ a direct numerical simulation technique that uses the
compressible Navier-Stokes equations with a surface-tension term as the
governing equations to investigate the transition frequencies of two coupled
bubbles by observing their pulsation amplitudes and directions of translational
motion, both of which change as the driving frequency changes. The numerical
results reproduce the recent theoretical predictions, validating the existence
of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres
Numerical simulation of a collapsing bubble subject to gravity
© 2016 AIP Publishing LLC. The present paper focuses on the simulation of the expansion and aspherical collapse of a laser-generated bubble subjected to an acceleration field and comparison of the results with instances from high-speed videos. The interaction of the liquid and gas is handled with the volume of fluid method. Compressibility effects have been included for each phase to predict the propagation of pressure waves. Initial conditions were estimated through the Rayleigh Plesset equation, based on the maximum bubble size and collapse time. The simulation predictions indicate that during the expansion the bubble shape is very close to spherical. On the other hand, during the collapse the bubble point closest to the bottom of the container develops a slightly higher collapse velocity than the rest of the bubble surface. Over time, this causes momentum focusing and leads to a positive feedback mechanism that amplifies the collapse locally. At the latest collapse stages, a jet is formed at the axis of symmetry, with opposite direction to the acceleration vector, reaching velocities of even 300 m/s. The simulation results agree with the observed bubble evolution and pattern from the experiments, obtained using high speed imaging, showing the collapse mechanism in great detail and clarity
Cerebellar control of cortico-striatal LTD
Purpose: Recent anatomical studies showed the presence of cerebellar and basal ganglia connections. It is thus conceivable that the cerebellum may influence the striatal synaptic transmission in general, and synaptic plasticity in particular.
Methods: In the present neurophysiological investigation in brain slices, we studied striatal long-term depression (LTD), a crucial form of synaptic plasticity involved in motor learning after cerebellar lesions in rats.
Results: Striatal LTD was fully abolished in the left striatum of rats with right hemicerebellectomy recorded 3 and 7 days following surgery, when the motor deficits were at their peak. Fifteen days after the hemicerebellectomy, rats had partially compensated their motor deficits and high-frequency stimulation of excitatory synapses in the left striatum was able to induce a stable LTD. Striatal plasticity was conversely normal ipsilaterally to cerebellar lesions, as well as in the right and left striatum of sham-operated animals.
Conclusions: These data show that the cerebellum controls striatal synaptic plasticity, supporting the notion that the two structures operate in conjunction during motor learning
Differential criterion of a bubble collapse in viscous liquids
The present work is devoted to a model of bubble collapse in a Newtonian
viscous liquid caused by an initial bubble wall motion. The obtained bubble
dynamics described by an analytic solution significantly depends on the liquid
and bubble parameters. The theory gives two types of bubble behavior: collapse
and viscous damping. This results in a general collapse condition proposed as
the sufficient differential criterion. The suggested criterion is discussed and
successfully applied to the analysis of the void and gas bubble collapses.Comment: 5 pages, 3 figure
- …
