3,106 research outputs found
New Structure In The Shapley Supercluster
We present new radial velocities for 189 galaxies in a 91 sq. deg region of
the Shapley supercluster measured with the FLAIR-II spectrograph on the UK
Schmidt Telescope. The data reveal two sheets of galaxies linking the major
concentrations of the supercluster. The supercluster is not flattened in
Declination as was suggested previously and it may be at least 30 percent
larger than previously thought with a correspondingly larger contribution to
the motion of the Local Group.Comment: LaTex: 2 pages, 1 figure, includes conf_iap.sty style file. To appear
in proceedings of The 14th IAP Colloquium: Wide Field Surveys in Cosmology,
held in Paris, 1998 May 26--30, eds. S.Colombi, Y.Mellie
Competing types of quantum oscillations in the 2D organic conductor (BEDT-TTF)8Hg4Cl12(C6H5Cl)2
Interlayer magnetoconductance of the quasi-two dimensional organic metal
(BEDT-TTF)8Hg4Cl12(C6H5Cl)2 has been investigated in pulsed magnetic fields
extending up to 36 T and in the temperature range from 1.6 to 15 K. A complex
oscillatory spectrum, built on linear combinations of three basic frequencies
only is observed. These basic frequencies arise from the compensated closed
hole and electron orbits and from the two orbits located in between. The field
and temperature dependencies of the amplitude of the various oscillation series
are studied within the framework of the coupled orbits model of Falicov and
Stachowiak. This analysis reveals that these series result from the
contribution of either conventional Shubnikov-de Haas effect (SdH) or quantum
interference (QI), both of them being induced by magnetic breakthrough.
Nevertheless, discrepancies between experimental and calculated parameters
indicate that these phenomena alone cannot account for all of the data. Due to
its low effective mass, one of the QI oscillation series - which corresponds to
the whole first Brillouin zone area - is clearly observed up to 13 K.Comment: 8 pages, 8 figures. To be published in Phys. Rev.
Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport
We report on the study of the Fermi surface of the electron-doped cuprate
superconductor NdCeCuO by measuring the interlayer
magnetoresistance as a function of the strength and orientation of the applied
magnetic field. We performed experiments in both steady and pulsed magnetic
fields on high-quality single crystals with Ce concentrations of to
0.17. In the overdoped regime of we found both semiclassical
angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas
(SdH) oscillations. The combined AMRO and SdH data clearly show that the
appearance of fast SdH oscillations in strongly overdoped samples is caused by
magnetic breakdown. This observation provides clear evidence for a
reconstructed multiply-connected Fermi surface up to the very end of the
overdoped regime at . The strength of the superlattice potential
responsible for the reconstructed Fermi surface is found to decrease with
increasing doping level and likely vanishes at the same carrier concentration
as superconductivity, suggesting a close relation between translational
symmetry breaking and superconducting pairing. A detailed analysis of the
high-resolution SdH data allowed us to determine the effective cyclotron mass
and Dingle temperature, as well as to estimate the magnetic breakdown field in
the overdoped regime.Comment: 23 pages, 8 figure
Field-induced quantum critical route to a Fermi liquid in high-temperature superconductors
In high transition temperature (T_c) superconductivity, charge doping is a
natural tuning parameter that takes copper oxides from the antiferromagnet to
the superconducting region. In the metallic state above T_c the standard
Landau's Fermi-liquid theory of metals as typified by the temperature squared
(T^2) dependence of resistivity appears to break down. Whether the origin of
the non-Fermi-liquid behavior is related to physics specific to the cuprates is
a fundamental question still under debate. We uncover a new transformation from
the non-Fermi- to a standard Fermi-liquid state driven not by doping but by
magnetic field in the overdoped high-T_c superconductor Tl_2Ba_2CuO_{6+x}. From
the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid
features appear above a sufficiently high field which decreases linearly with
temperature and lands at a quantum critical point near the superconductivity's
upper critical field -- with the Fermi-liquid coefficient of the T^2 dependence
showing a power-law diverging behavior on the approach to the critical point.
This field-induced quantum criticality bears a striking resemblance to that in
quasi-two dimensional heavy-Fermion superconductors, suggesting a common
underlying spin-related physics in these superconductors with strong electron
correlations.Comment: 6 pages, 4 figure
Correlation between Fermi surface transformations and superconductivity in the electron-doped high- superconductor NdCeCuO
Two critical points have been revealed in the normal-state phase diagram of
the electron-doped cuprate superconductor NdCeCuO by exploring
the Fermi surface properties of high quality single crystals by high-field
magnetotransport. First, the quantitative analysis of the Shubnikov-de Haas
effect shows that the weak superlattice potential responsible for the Fermi
surface reconstruction in the overdoped regime extrapolates to zero at the
doping level corresponding to the onset of superconductivity.
Second, the high-field Hall coefficient exhibits a sharp drop right below
optimal doping where the superconducting transition
temperature is maximum. This drop is most likely caused by the onset of
long-range antiferromagnetic ordering. Thus, the superconducting dome appears
to be pinned by two critical points to the normal state phase diagram.Comment: 9 pages; 7 figures; 1 tabl
Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor
The transport of heat and charge in the overdoped cuprate superconductor
Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal
state, obtained by applying a magnetic field greater than the upper critical
field, the Wiedemann-Franz law is verified to hold perfectly. In the
superconducting state, a large residual linear term is observed in the thermal
conductivity, in quantitative agreement with BCS theory for a d-wave
superconductor. This is compelling evidence that the electrons in overdoped
cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev.
Lett. 89, 147003 (2002
- …
