297 research outputs found

    Scalable System Scheduling for HPC and Big Data

    Full text link
    In the rapidly expanding field of parallel processing, job schedulers are the "operating systems" of modern big data architectures and supercomputing systems. Job schedulers allocate computing resources and control the execution of processes on those resources. Historically, job schedulers were the domain of supercomputers, and job schedulers were designed to run massive, long-running computations over days and weeks. More recently, big data workloads have created a need for a new class of computations consisting of many short computations taking seconds or minutes that process enormous quantities of data. For both supercomputers and big data systems, the efficiency of the job scheduler represents a fundamental limit on the efficiency of the system. Detailed measurement and modeling of the performance of schedulers are critical for maximizing the performance of a large-scale computing system. This paper presents a detailed feature analysis of 15 supercomputing and big data schedulers. For big data workloads, the scheduler latency is the most important performance characteristic of the scheduler. A theoretical model of the latency of these schedulers is developed and used to design experiments targeted at measuring scheduler latency. Detailed benchmarking of four of the most popular schedulers (Slurm, Son of Grid Engine, Mesos, and Hadoop YARN) are conducted. The theoretical model is compared with data and demonstrates that scheduler performance can be characterized by two key parameters: the marginal latency of the scheduler tst_s and a nonlinear exponent αs\alpha_s. For all four schedulers, the utilization of the computing system decreases to < 10\% for computations lasting only a few seconds. Multilevel schedulers that transparently aggregate short computations can improve utilization for these short computations to > 90\% for all four of the schedulers that were tested.Comment: 34 pages, 7 figure

    Performance Measurements of Supercomputing and Cloud Storage Solutions

    Full text link
    Increasing amounts of data from varied sources, particularly in the fields of machine learning and graph analytics, are causing storage requirements to grow rapidly. A variety of technologies exist for storing and sharing these data, ranging from parallel file systems used by supercomputers to distributed block storage systems found in clouds. Relatively few comparative measurements exist to inform decisions about which storage systems are best suited for particular tasks. This work provides these measurements for two of the most popular storage technologies: Lustre and Amazon S3. Lustre is an open-source, high performance, parallel file system used by many of the largest supercomputers in the world. Amazon's Simple Storage Service, or S3, is part of the Amazon Web Services offering, and offers a scalable, distributed option to store and retrieve data from anywhere on the Internet. Parallel processing is essential for achieving high performance on modern storage systems. The performance tests used span the gamut of parallel I/O scenarios, ranging from single-client, single-node Amazon S3 and Lustre performance to a large-scale, multi-client test designed to demonstrate the capabilities of a modern storage appliance under heavy load. These results show that, when parallel I/O is used correctly (i.e., many simultaneous read or write processes), full network bandwidth performance is achievable and ranged from 10 gigabits/s over a 10 GigE S3 connection to 0.35 terabits/s using Lustre on a 1200 port 10 GigE switch. These results demonstrate that S3 is well-suited to sharing vast quantities of data over the Internet, while Lustre is well-suited to processing large quantities of data locally.Comment: 5 pages, 4 figures, to appear in IEEE HPEC 201

    Enabling On-Demand Database Computing with MIT SuperCloud Database Management System

    Full text link
    The MIT SuperCloud database management system allows for rapid creation and flexible execution of a variety of the latest scientific databases, including Apache Accumulo and SciDB. It is designed to permit these databases to run on a High Performance Computing Cluster (HPCC) platform as seamlessly as any other HPCC job. It ensures the seamless migration of the databases to the resources assigned by the HPCC scheduler and centralized storage of the database files when not running. It also permits snapshotting of databases to allow researchers to experiment and push the limits of the technology without concerns for data or productivity loss if the database becomes unstable.Comment: 6 pages; accepted to IEEE High Performance Extreme Computing (HPEC) conference 2015. arXiv admin note: text overlap with arXiv:1406.492

    Optical characterization of AlAsSb digital alloy and random alloy on GaSb

    Get PDF
    III-(As, Sb) alloys are building blocks for various advanced optoelectronic devices, but the growth of their ternary or quaternary materials are commonly limited by spontaneous formation of clusters and phase separations during alloying. Recently, digital alloy growth by molecular beam epitaxy has been widely adopted in preference to conventional random alloy growth because of the extra degree of control offered by the ordered alloying. In this article, we provide a comparative study of the optical characteristics of AlAsSb alloys grown lattice-matched to GaSb using both techniques. The sample grown by digital alloy technique showed stronger photoluminescence intensity, narrower peak linewidth, and larger carrier activation energy than the random alloy technique, indicating an improved optical quality with lower density of non-radiative recombination centers. In addition, a relatively long carrier lifetime was observed from the digital alloy sample, consistent with the results obtained from the photoluminescence study

    Measuring the Impact of Spectre and Meltdown

    Full text link
    The Spectre and Meltdown flaws in modern microprocessors represent a new class of attacks that have been difficult to mitigate. The mitigations that have been proposed have known performance impacts. The reported magnitude of these impacts varies depending on the industry sector and expected workload characteristics. In this paper, we measure the performance impact on several workloads relevant to HPC systems. We show that the impact can be significant on both synthetic and realistic workloads. We also show that the performance penalties are difficult to avoid even in dedicated systems where security is a lesser concern

    Lustre, Hadoop, Accumulo

    Full text link
    Data processing systems impose multiple views on data as it is processed by the system. These views include spreadsheets, databases, matrices, and graphs. There are a wide variety of technologies that can be used to store and process data through these different steps. The Lustre parallel file system, the Hadoop distributed file system, and the Accumulo database are all designed to address the largest and the most challenging data storage problems. There have been many ad-hoc comparisons of these technologies. This paper describes the foundational principles of each technology, provides simple models for assessing their capabilities, and compares the various technologies on a hypothetical common cluster. These comparisons indicate that Lustre provides 2x more storage capacity, is less likely to loose data during 3 simultaneous drive failures, and provides higher bandwidth on general purpose workloads. Hadoop can provide 4x greater read bandwidth on special purpose workloads. Accumulo provides 10,000x lower latency on random lookups than either Lustre or Hadoop but Accumulo's bulk bandwidth is 10x less. Significant recent work has been done to enable mix-and-match solutions that allow Lustre, Hadoop, and Accumulo to be combined in different ways.Comment: 6 pages; accepted to IEEE High Performance Extreme Computing conference, Waltham, MA, 201

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    Effects of Loneliness, Years of Service, and Spiritual Well-Being upon Burn-Out Among Lutheran Church-Missouri Synod Clergy

    Full text link
    Past research had concluded that a combination of individual and situational factors interact as causes for burn-out in ministers. This present study sought to measure three factors, loneliness, years of service, and spiritual well-being for their singular and combined impact upon burn-out among Christian pastors. Lutheran Church-Missouri Synod pastors, 276 in number, were surveyed to determine their level of burn-out, together with measure of the afore-mentioned variables. It was expected that fewer years of service, lower spiritual well-being, and higher loneliness would effect increased levels of measured burn-out in the pastors surveyed. A three-way analysis of variance indicated that burn-out scores were effected by loneliness, years of service, and spiritual well-being, but revealed no interaction effects of these three factors upon burn-out scores. Future recommendations for research include attempts to determine likely points in career for burn-out, and future identification of factors which effect increased burnout

    Benchmarking SciDB Data Import on HPC Systems

    Full text link
    SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting data for analysis. It is designed to be massively parallel and can run on commodity hardware in a high performance computing (HPC) environment. In this paper, we present the performance of SciDB using simulated image data. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a cluster running the MIT SuperCloud software stack. A peak performance of 2.2M database inserts per second was achieved on a single node of this system. We also show that SciDB and the D4M toolbox provide more efficient ways to access random sub-volumes of massive datasets compared to the traditional approaches of reading volumetric data from individual files. This work describes the D4M and SciDB tools we developed and presents the initial performance results. This performance was achieved by using parallel inserts, a in-database merging of arrays as well as supercomputing techniques, such as distributed arrays and single-program-multiple-data programming.Comment: 5 pages, 4 figures, IEEE High Performance Extreme Computing (HPEC) 2016, best paper finalis
    corecore