416 research outputs found
6D supergravity without tensor multiplets
We systematically investigate the finite set of possible gauge groups and
matter content for N = 1 supergravity theories in six dimensions with no tensor
multiplets, focusing on nonabelian gauge groups which are a product of SU(N)
factors. We identify a number of models which obey all known low-energy
consistency conditions, but which have no known string theory realization. Many
of these models contain novel matter representations, suggesting possible new
string theory constructions. Many of the most exotic matter structures arise in
models which precisely saturate the gravitational anomaly bound on the number
of hypermultiplets. Such models have a rigid symmetry structure, in the sense
that there are no moduli which leave the full gauge group unbroken.Comment: 31 pages, latex; v2, v3: minor corrections, references adde
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes
Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network
Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa
In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
Measurement of branching fractions and mass spectra of B -> K pi pi gamma (vol 98, art no 211804, 2007)
Contains fulltext :
71970.pdf (publisher's version ) (Open Access)2 p
Search for the rare leptonic decay B-->tau(-)nu(tau)
We present a search for the decay B- -> tau(-)(tau) in a sample of 88.9 x 10(6) B (B) over bar pairs recorded with the BABAR detector at the Stanford Linear Accelerator Center B factory. One of the two B mesons from the Upsilon(4S) is reconstructed in a hadronic or a semileptonic final state, and the decay products of the other B in the event are analyzed for consistency with a B- -> tau(-)(tau) decay. We find no evidence of a signal and set an upper limit on the branching fraction of B((B) over bar -> tau(-)(tau)) < 4.2 x 10(-4) at the 90% confidence level
Measurement of the CP asymmetry and branching fraction of B-0 ->rho K-0(0)
We present a measurement of the branching fraction and time-dependent CP asymmetry of B-0 -> POKO. The results are obtained from a data sample of 227 x 10(6) Y(4S) -> BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at Stanford Linear Accelerator Center. From a time-dependent maximum likelihood fit yielding 111 +/- 19 signal events, we find B(B-0 -> rho K-0(0)) = (4.9 +/- 0.8 +/- 0.9) x 10(-6), where the first error is statistical and the second systematic. We report the measurement of the CP parameters S-rho 0KS0 = 0.20 +/- 0.52 +/- 0.24 and C-rho 0KS0 = 0.64 +/- 0.41 +/- 0.20
Measurement of branching fractions and mass spectra of B -> K pi pi gamma
We present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B -> K pi pi gamma in the range m(K pi pi)pi(+)pi(-). Using 232x10(6) e(+)e(-)-> B (B) over bar events recorded by the BABAR experiment at the SLAC PEP-II asymmetric-energy storage ring, we measure the branching fractions B(B+-> K+pi(-)pi(+)gamma)=[2.95 +/- 0.13(stat)+/- 0.20(syst)]x10(-5), B(B-0 -> K+pi(-)pi(0)gamma)=[4.07 +/- 0.22(stat)+/- 0.31(syst)]x10(-5), B(B-0 -> K-0 pi(+)pi(-)gamma)=[1.85 +/- 0.21(stat)+/- 0.12(syst)]x10(-5), and B(B+-> K-0 pi(+)pi(0)gamma)=[4.56 +/- 0.42(stat)+/- 0.31(syst)]x10(-5)
Measurements of the branching fraction and CP-violation asymmetries in B-0 -> f(0)(980)K-S(0)
We present measurements of the branching fraction and CP-violating asymmetries in the decay B-0-->f(0)(980)K-S(0). The results are obtained from a data sample of 123x10(6) Y(4S)-->B (B) over bar decays. From a time-dependent maximum likelihood fit, we measure the branching fraction B(B-0-->f(0)(980)(-->pi(+)pi(-))K-0)=(6.0+/-0.9+/-0.6+/-1.2)x10(-6), the mixing-induced CP violation parameter S=-1.62(-0.51)(+0.56)+/-0.09+/-0.04, and the direct CP violation parameter C=0.27+/-0.36+/-0.10+/-0.07, where the first errors are statistical, the second systematic, and the third due to model uncertainties. We measure the f(0)(980) mass and width to be m(f0)(980)=(980.6+/-4.1+/-0.5+/-4.0) MeV/c(2) and Gamma(f0)(980)=(43(-9)(+12)+/-3+/-9) MeV/c(2), respectively
- …
