17 research outputs found

    The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations

    Get PDF
    Many neuroscientific reports reference discrete macro-anatomical regions of the brain which were delineated according to a brain atlas or parcellation protocol. Currently, however, no widely accepted standards exist for partitioning the cortex and subcortical structures, or for assigning labels to the resulting regions, and many procedures are being actively used. Previous attempts to reconcile neuroanatomical nomenclatures have been largely qualitative, focusing on the development of thesauri or simple semantic mappings between terms. Here we take a fundamentally different approach, discounting the names of regions and instead comparing their definitions as spatial entities in an effort to provide more precise quantitative mappings between anatomical entities as defined by different atlases. We develop an analytical framework for studying this brain atlas concordance problem, and apply these methods in a comparison of eight diverse labeling methods used by the neuroimaging community. These analyses result in conditional probabilities that enable mapping between regions across atlases, which also form the input to graph-based methods for extracting higher-order relationships between sets of regions and to procedures for assessing the global similarity between different parcellations of the same brain. At a global scale, the overall results demonstrate a considerable lack of concordance between available parcellation schemes, falling within chance levels for some atlas pairs. At a finer level, this study reveals spatial relationships between sets of defined regions that are not obviously apparent; these are of high potential interest to researchers faced with the challenge of comparing results that were based on these different anatomical models, particularly when coordinate-based data are not available. The complexity of the spatial overlap patterns revealed points to problems for attempts to reconcile anatomical parcellations and nomenclatures using strictly qualitative and/or categorical methods. Detailed results from this study are made available via an interactive web site at http://obart.info

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    Loss and Damage in the Rapidly Changing Arctic

    Get PDF
    Arctic climate change is happening much faster than the global average. Arctic change also has global consequences, in addition to local ones. Scientific evidence shows that meltwater of Arctic sources contributes to sea-level rise significantly while accounting for 35% of current global sea-level rise. Arctic communities have to find ways to deal with rapidly changing environmental conditions that are leading to social impacts such as outmigration, similarly to the global South. International debates on Loss and Damage have not addressed the Arctic so far. We review literature to show what impacts of climate change are already visible in the Arctic, and present local cases in order to provide empirical evidence of losses and damages in the Arctic region. This evidence is particularly well presented in the context of outmigration and relocation of which we highlight examples. The review reveals a need for new governance mechanisms and institutional frameworks to tackle Loss and Damage. Finally, we discuss what implications Arctic losses and damages have for the international debate

    Diffusion tensor imaging in patients with obstetric antiphospholipid syndrome without neuropsychiatric symptoms

    No full text
    International audienceOBJECTIVES:To evaluate white matter (WM) integrity in neurologically asymptomatic antiphospholipid syndrome (APS) using diffusion tensor imaging (DTI) in women with no thrombotic history but with pregnancy loss.METHODS:Imaging was performed with a 3 T scanner using structural MRI (T1-weighted, fluid attenuation inversion recovery [FLAIR]) and DTI sequences in 66 women with APS and a control group of 17 women. Women with APS were further categorized as positive for lupus anticoagulant (LA) and/or aβ2GPI-G antibodies (LA/aβ2GPI-G-positive, N = 29) or negative (LA/aβ2GPI-G-negative, N = 37) for both. Tract-based spatial statistics of standard DTI-based indices were compared among groups.RESULTS:Women with APS had significantly lower fractional anisotropy (p < 0.05) associated with higher mean diffusivity and radial diffusivity compared to the control group. There was a stronger association of abnormal DTI features among women positive for LA and/or aβ2GPI-IgG antibodies than those who were negative.CONCLUSIONS:DTI appears sensitive to subtle WM changes in women with APS with no thrombotic history but with pregnancy loss, compatible with alterations in axonal structure and in the myelin sheath. The preferential association of abnormal DTI features with the two most pathogenic aPLAbs reinforces the pathophysiological relevance of our findings.KEY POINTS:• APS women exhibited lower FA and higher MD and RD than controls. • WM impairments are more severe in patients with positive LA or aβ2GPI-IgG. • An association exists between abnormal DTI features and LA or aβ2GPI-IgG positivity. • Diffusion tensor imaging detects microstructural white matter abnormalities in APS women
    corecore