11 research outputs found
Genetic and Molecular Biological Analysis of Protein-Protein Interactions in Coronavirus Assembly
Training Teachers to Prevent Violence Against Children: The First Line Against Family Violence
Identifying SARS-CoV Membrane Protein Amino Acid Residues Linked to Virus-Like Particle Assembly
Severe acute respiratory syndrome coronavirus (SARS-CoV) membrane (M) proteins are capable of self-assembly and release in the form of membrane-enveloped vesicles, and of forming virus-like particles (VLPs) when coexpressed with SARS-CoV nucleocapsid (N) protein. According to previous deletion analyses, M self-assembly involves multiple M sequence regions. To identify important M amino acid residues for VLP assembly, we coexpressed N with multiple M mutants containing substitution mutations at the amino-terminal ectodomain, carboxyl-terminal endodomain, or transmembrane segments. Our results indicate that a dileucine motif in the endodomain tail (218LL219) is required for efficient N packaging into VLPs. Results from cross-linking VLP analyses suggest that the cysteine residues 63, 85 and 158 are not in close proximity to the M dimer interface. We noted a significant reduction in M secretion due to serine replacement for C158, but not for C63 or C85. Further analysis suggests that C158 is involved in M-N interaction. In addition to mutations of the highly conserved 107-SWWSFNPE-114 motif, substitutions at codons W19, W57, P58, W91, Y94 or F95 all resulted in significantly reduced VLP yields, largely due to defective M secretion. VLP production was not significantly affected by a tryptophan replacement of Y94 or F95 or a phenylalanine replacement of W19, W57 or W91. Combined, these results indicate the involvement of specific M amino acids during SARS-CoV virus assembly, and suggest that aromatic residue retention at specific positions is critical for M function in terms of directing virus assembly
Vitamin D Antagonises the Suppressive Effect of Inflammatory Cytokines on CTLA-4 Expression and Regulatory Function
<div><p>The immune suppressive protein CTLA-4 is constitutively expressed by Tregs and induced in effector T cells upon activation. Its crucial role in adaptive immunity is apparent from the fatal autoimmune pathology seen in CTLA-4 knockout mice. However, little is known regarding factors that regulate CTLA-4 expression and their effect upon its function to remove CD80 and CD86 from antigen presenting cells by transendocytosis. Th17 cells are emerging as significant players in autoimmunity as well as other diseases. Therefore, in this study we have examined the effects of Th17 polarising conditions on CTLA-4 expression and function in human T cells and show that Th17 conditions can suppress the expression of CTLA-4 and its transendocytic function. In contrast to Th17 cells, vitamin D is inversely associated with autoimmune disease. We have previously shown a striking ability of 1,25 dihydroxyvitamin D<sub>3</sub> (1,25(OH)<sub>2</sub>D<sub>3</sub>) to enhance CTLA-4, however, its effects upon B7 transendocytosis and its activity in the context of inflammation remained unknown. Here we show that induction of CTLA-4 by 1,25(OH)<sub>2</sub>D<sub>3</sub> can actually be enhanced in the presence of Th17 polarising cytokines. Furthermore, its transendocytic function was maintained such that T cells generated in the presence of Th17 conditions and 1,25(OH)<sub>2</sub>D<sub>3</sub> were highly effective at capturing CTLA-4 ligands from antigen presenting cells and suppressing T cell division. Taken together, these data reveal an inhibitory effect of Th17 polarising conditions upon CTLA-4-mediated regulation and show that 1,25(OH)<sub>2</sub>D<sub>3</sub> counteracts this effect. Given the importance of CTLA-4-mediated suppression in the control of autoimmune diseases, our novel data highlight the importance of vitamin D in inflammatory settings.</p></div
