4,789 research outputs found
Analysis of the Brinkman-Forchheimer equations with slip boundary conditions
In this work, we study the Brinkman-Forchheimer equations driven under slip
boundary conditions of friction type. We prove the existence and uniqueness of
weak solutions by means of regularization combined with the Faedo-Galerkin
approach. Next we discuss the continuity of the solution with respect to
Brinkman's and Forchheimer's coefficients. Finally, we show that the weak
solution of the corresponding stationary problem is stable
Nonconservative Lagrangian mechanics II: purely causal equations of motion
This work builds on the Volterra series formalism presented in [D. W.
Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model
nonconservative systems. Here we treat Lagrangians and actions as `time
dependent' Volterra series. We present a new family of kernels to be used in
these Volterra series that allow us to derive a single retarded equation of
motion using a variational principle
Negative discriminant states in N=4 supersymmetric string theories
Single centered BPS black hole solutions exist only when the charge carried
by the black hole has positive discriminant. On the other hand the exact dyon
spectrum in heterotic string theory compactified on T^6 is known to contain
states with negative discriminant. We show that all of these negative
discriminant states can be accounted for as two centered black holes. Thus
after the contribution to the index from the two centered black holes is
subtracted from the total microscopic index, the index for states with negative
discriminant vanishes even for finite values of charges, in agreement with the
results from the black hole side. Bound state metamorphosis -- which requires
us to identify certain apparently different two centered configurations
according to a specific set of rules -- plays a crucial role in this analysis.
We also generalize these results to a class of CHL string theories.Comment: LaTeX file, 32 pages; v2: reference added; v3: added new section 3.
Homological Localisation of Model Categories
One of the most useful methods for studying the stable homotopy category is localising at some spectrum E. For an arbitrary stable model category we introduce a candidate
for the E–localisation of this model category. We study the properties of this new construction and relate it to some well–known categories
Engineered swift equilibration of a Brownian particle
A fundamental and intrinsic property of any device or natural system is its
relaxation time relax, which is the time it takes to return to equilibrium
after the sudden change of a control parameter [1]. Reducing relax , is
frequently necessary, and is often obtained by a complex feedback process. To
overcome the limitations of such an approach, alternative methods based on
driving have been recently demonstrated [2, 3], for isolated quantum and
classical systems [4--9]. Their extension to open systems in contact with a
thermostat is a stumbling block for applications. Here, we design a
protocol,named Engineered Swift Equilibration (ESE), that shortcuts
time-consuming relaxations, and we apply it to a Brownian particle trapped in
an optical potential whose properties can be controlled in time. We implement
the process experimentally, showing that it allows the system to reach
equilibrium times faster than the natural equilibration rate. We also estimate
the increase of the dissipated energy needed to get such a time reduction. The
method paves the way for applications in micro and nano devices, where the
reduction of operation time represents as substantial a challenge as
miniaturization [10]. The concepts of equilibrium and of transformations from
an equilibrium state to another, are cornerstones of thermodynamics. A textbook
illustration is provided by the expansion of a gas, starting at equilibrium and
expanding to reach a new equilibrium in a larger vessel. This operation can be
performed either very slowly by a piston, without dissipating energy into the
environment, or alternatively quickly, letting the piston freely move to reach
the new volume
Seed systems smallholder farmers use
Seed can be an important entry point for promoting productivity, nutrition and resilience among smallholder farmers. While investments have primarily focused on strengthening the formal sector, this article documents the degree to which the informal sector remains the core for seed acquisition, especially in Africa. Conclusions drawn from a uniquely comprehensive data set, 9660 observations across six countries and covering 40 crops, show that farmers access 90.2 % of their seed from informal systems with 50.9 % of that deriving from local markets. Further, 55 % of seed is paid for by cash, indicating that smallholders are already making important investments in this arena. Targeted interventions are proposed for rendering formal and informal seed sector more smallholder-responsive and for scaling up positive impacts
Discrete Information from CHL Black Holes
AdS_2/CFT_1 correspondence predicts that the logarithm of a Z_N twisted index
over states carrying a fixed set of charges grows as 1/N times the entropy of
the black hole carrying the same set of charges. In this paper we verify this
explicitly by calculating the microscopic Z_N twisted index for a class of
states in the CHL models. This demonstrates that black holes carry more
information about the microstates than just the total degeneracy.Comment: LaTeX file, 24 pages; v2: references adde
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
- …
