237 research outputs found
Evaluation of the drug solubility and rush ageing on drug release performance of various model drugs from the modified release polyethylene oxide matrix tablets
Hydrophilic matrix systems are currently some of the most widely used drug delivery systems for controlled-release oral dosage forms. Amongst a variety of polymers, polyethylene oxide (PEO) is considered an important material used in pharmaceutical formulations. As PEO is sensitive to thermal oxidation, it is susceptible to free radical oxidative attack. The aim of this study was to investigate the stability of PEO based formulations containing different model drugs with different water solubility, namely propranolol HCl, theophylline and zonisamide. Both polyox matrices 750 and 303 grade were used as model carriers for the manufacture of tablets stored at 40 °C. The results of the present study suggest that the drug release from the matrix was affected by the length of storage conditions, solubility of drugs and the molecular weight of the polymers. Generally, increased drug release rates were prevalent in soluble drug formulations (propranolol) when stored at the elevated temperature (40 °C). In contrast, it was not observed with semi soluble (theophylline) and poorly soluble (zonisamide) drugs especially when formulated with PEO 303 polymer. This indicates that the main parameters controlling the drug release from fresh polyox matrices are the solubility of the drug in the dissolution medium and the molecular weight of the polymer. DSC traces indicated that that there was a big difference in the enthalpy and melting points of fresh and aged PEO samples containing propranolol, whereas the melting point of the aged polyox samples containing theophylline and zonisamide was unaffected
Recommended from our members
Effect of crosslinking on the microtribological behavior of model polymer brushes
Polymer brushes in good solvents are known to exhibit excellent tribological properties. We have modeled polymer brushes and their gels using a multibead-spring model and studied their tribological behavior via nonequilibrium molecular-dynamics (MD) simulations. Simulations of brush- against-wall systems were performed using an implicit solvent-based approach. Polymer chains were modeled as linear chains, randomly grafted on a planar surface. Quantities extracted from the simulations are the normal stress, shear stress and concentration profiles. We find that while an increase in the degree of crosslinking leads to an increase in the coefficient of friction, an increase of the length of crosslinker chains does the opposite. Effect of crosslinking can be understood in two ways: (i) there are fewer polymer chains in the outer layer as the degree of crosslinking increases to take part in brush-assisted lubrication, and (ii) crosslinked polymer chains are more resistant to shear than non-crosslinked ones
Perspectives and Integration in SOLAS Science
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm.
Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling.
Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Offspring of parents with Balkan Endemic Nephropathy have higher C-reactive protein levels suggestive of inflammatory processes: a longitudinal study
<p>Abstract</p> <p>Background</p> <p>Despite the characteristic extensive tubulointerstitial fibrosis, Balkan Endemic Nephropathy (BEN) is usually considered a non-inflammatory disease.</p> <p>Methods</p> <p>We examined a marker of inflammation, C-reactive protein (CRP), in the offspring of patients with BEN, a population at risk for BEN, prior to development of established disease to determine if an inflammatory process could be identified in the early stages of the disease. In 2003/04, 102 adult offspring whose parents had BEN and a control group of 99 adult offspring of non-BEN patients were enrolled in this prospective study. This cohort was re-examined yearly for four consecutive years. Levels of serum CRP were measured in years 3 and 4 and compared between groups. The data were analyzed with mixed models.</p> <p>Results</p> <p>Compared to controls, offspring of BEN parents had statistically higher CRP levels in two consecutive years, suggestive of early inflammatory reactivity. Whenever the mother was affected by BEN (both parents, or mother only), serum CRP was significantly increased, but not if only the father had BEN. CRP was inversely related to kidney cortex width but not to markers or renal function.</p> <p>Conclusion</p> <p>Early stages of BEN may involve inflammatory processes. The observation of a maternal involvement supports the concept of fetal programming, which has been implicated in the pathogenesis of other chronic kidney diseases.</p
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends
Despite performance improvements of organic photovoltaics, the mechanism of photoinduced electron-hole separation at organic donor-acceptor interfaces remains poorly understood. Inconclusive experimental and theoretical results have produced contradictory models for electron-hole separation in which the role of interfacial charge-transfer (CT) states is unclear, with one model identifying them as limiting separation and another as readily dissociating. Here, polymer-fullerene blends with contrasting photocurrent properties and enthalpic offsets driving separation were studied. By modifying composition, film structures were varied from consisting of molecularly mixed polymer-fullerene domains to consisting of both molecularly mixed and fullerene domains. Transient absorption spectroscopy revealed that CT state dissociation generating separated electron-hole pairs is only efficient in the high energy offset blend with fullerene domains. In all other blends (with low offset or predominantly molecularly mixed domains), nanosecond geminate electron-hole recombination is observed revealing the importance of spatially localized electron-hole pairs (bound CT states) in the electron-hole dynamics. A two-dimensional lattice exciton model was used to simulate the excited state spectrum of a model system as a function of microstructure and energy offset. The results could reproduce the main features of experimental electroluminescence spectra indicating that electron-hole pairs become less bound and more spatially separated upon increasing energy offset and fullerene domain density. Differences between electroluminescence and photoluminescence spectra could be explained by CT photoluminescence being dominated by more-bound states, reflecting geminate recombination processes, while CT electroluminescence preferentially probes less-bound CT states that escape geminate recombination. These results suggest that apparently contradictory studies on electron-hole separation can be explained by the presence of both bound and unbound CT states in the same film, as a result of a range of interface structures
A Review of the Design Process for Implantable Orthopedic Medical Devices
The design process for medical devices is highly regulated to ensure the safety of patients. This paper will present a review of the design process for implantable orthopedic medical devices. It will cover the main stages of feasibility, design reviews, design, design verification, manufacture, design validation, design transfer and design changes
Managing formalization to increase global team effectiveness and meaningfulness of work in multinational organizations
Global teams may help to integrate across locations, and yet, with formalized rules and procedures, responsiveness to those locations’ effectiveness, and the team members’ experiences of work as meaningful may suffer. We employ a mixed-methods approach to understand how the level and content of formalization can be managed to resolve these tensions in multinationals. In a sample of global teams from a large mining and resources organization operating across 44 countries, interviews, observations, and a quantitative 2-wave survey revealed a great deal of variability between teams in how formalization processes were enacted. Only those formalization processes that promoted knowledge sharing were instrumental in improving team effectiveness. Implementing rules and procedures in the set-up of the teams and projects, rather than during interactions, and utilizing protocols to help establish the global team as a source of identity increased this knowledge sharing. Finally, we found members’ personal need for structure moderated the effect of team formalization on how meaningful individuals found their work within the team. These findings have significant implications for theory and practice in multinational organizations
A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity
We constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions. Data acquisition and the control of scanning are performed by a LeCroy digital oscilloscope. The total cost of construction was one order of magnitude lower than that of a typical Ti:sapphire system. The entire imaging apparatus, including the laser, fits comfortably onto a small rig for electrophysiology. Despite the low cost and simplicity, the convergence of several new technologies allowed us to achieve the following capabilities: i) full-frame acquisition at video rates suitable for patch clamping; ii) random access in under ten microseconds with dwelling ability in the nominal focal plane; iii) three-dimensional random access with the ability to perform fast volume sweeps at kilohertz rates; and iv) fluorescence lifetime imaging. We demonstrate the ability to record action potentials with high temporal resolution using intracellularly loaded potentiometric dye di-2-ANEPEQ. Our design proffers easy integration with electrophysiology and promises a more widespread adoption of functional two-photon imaging as a tool for the study of neuronal activity. The software and firmware we developed is available for download at http://neurospy.org/ under an open source license
- …
