37 research outputs found
Model Checking Tap Withdrawal in C. Elegans
We present what we believe to be the first formal verification of a
biologically realistic (nonlinear ODE) model of a neural circuit in a
multicellular organism: Tap Withdrawal (TW) in \emph{C. Elegans}, the common
roundworm. TW is a reflexive behavior exhibited by \emph{C. Elegans} in
response to vibrating the surface on which it is moving; the neural circuit
underlying this response is the subject of this investigation. Specifically, we
perform reachability analysis on the TW circuit model of Wicks et al. (1996),
which enables us to estimate key circuit parameters. Underlying our approach is
the use of Fan and Mitra's recently developed technique for automatically
computing local discrepancy (convergence and divergence rates) of general
nonlinear systems. We show that the results we obtain are in agreement with the
experimental results of Wicks et al. (1995). As opposed to the fixed parameters
found in most biological models, which can only produce the predominant
behavior, our techniques characterize ranges of parameters that produce (and do
not produce) all three observed behaviors: reversal of movement, acceleration,
and lack of response
Bounded Verification with On-the-Fly Discrepancy Computation
Simulation-based verification algorithms can provide formal safety guarantees
for nonlinear and hybrid systems. The previous algorithms rely on user provided
model annotations called discrepancy function, which are crucial for computing
reachtubes from simulations. In this paper, we eliminate this requirement by
presenting an algorithm for computing piece-wise exponential discrepancy
functions. The algorithm relies on computing local convergence or divergence
rates of trajectories along a simulation using a coarse over-approximation of
the reach set and bounding the maximal eigenvalue of the Jacobian over this
over-approximation. The resulting discrepancy function preserves the soundness
and the relative completeness of the verification algorithm. We also provide a
coordinate transformation method to improve the local estimates for the
convergence or divergence rates in practical examples. We extend the method to
get the input-to-state discrepancy of nonlinear dynamical systems which can be
used for compositional analysis. Our experiments show that the approach is
effective in terms of running time for several benchmark problems, scales
reasonably to larger dimensional systems, and compares favorably with respect
to available tools for nonlinear models.Comment: 24 page
Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
Cyber-physical systems (CPS), such as automotive systems, are starting to
include sophisticated machine learning (ML) components. Their correctness,
therefore, depends on properties of the inner ML modules. While learning
algorithms aim to generalize from examples, they are only as good as the
examples provided, and recent efforts have shown that they can produce
inconsistent output under small adversarial perturbations. This raises the
question: can the output from learning components can lead to a failure of the
entire CPS? In this work, we address this question by formulating it as a
problem of falsifying signal temporal logic (STL) specifications for CPS with
ML components. We propose a compositional falsification framework where a
temporal logic falsifier and a machine learning analyzer cooperate with the aim
of finding falsifying executions of the considered model. The efficacy of the
proposed technique is shown on an automatic emergency braking system model with
a perception component based on deep neural networks
LNCS
We address the problem of analyzing the reachable set of a polynomial nonlinear continuous system by over-approximating the flowpipe of its dynamics. The common approach to tackle this problem is to perform a numerical integration over a given time horizon based on Taylor expansion and interval arithmetic. However, this method results to be very conservative when there is a large difference in speed between trajectories as time progresses. In this paper, we propose to use combinations of barrier functions, which we call piecewise barrier tube (PBT), to over-approximate flowpipe. The basic idea of PBT is that for each segment of a flowpipe, a coarse box which is big enough to contain the segment is constructed using sampled simulation and then in the box we compute by linear programming a set of barrier functions (called barrier tube or BT for short) which work together to form a tube surrounding the flowpipe. The benefit of using PBT is that (1) BT is independent of time and hence can avoid being stretched and deformed by time; and (2) a small number of BTs can form a tight over-approximation for the flowpipe, which means that the computation required to decide whether the BTs intersect the unsafe set can be reduced significantly. We implemented a prototype called PBTS in C++. Experiments on some benchmark systems show that our approach is effective
Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees
A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant cis-expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants
A Low-Frequency Inactivating Akt2 Variant Enriched in the Finnish Population is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk.
To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting insulin, a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in fasting plasma insulin (FI) levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-hour insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio=1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2
The genetic architecture of type 2 diabetes.
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes
Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa
In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
